Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Fine-Grained Classification of the Complexity of Evaluating the Tutte Polynomial on Integer Points Parameterized by Treewidth and Cutwidth (2307.01046v1)

Published 3 Jul 2023 in cs.CC and cs.DS

Abstract: We give a fine-grained classification of evaluating the Tutte polynomial $T(G;x,y)$ on all integer points on graphs with small treewidth and cutwidth. Specifically, we show for any point $(x,y) \in \mathbb{Z}2$ that either - can be computed in polynomial time, - can be computed in $2{O(tw)}n{O(1)}$ time, but not in $2{o(ctw)}n{O(1)}$ time assuming the Exponential Time Hypothesis (ETH), - can be computed in $2{O(tw \log tw)}n{O(1)}$ time, but not in $2{o(ctw \log ctw)}n{O(1)}$ time assuming the ETH, where we assume tree decompositions of treewidth $tw$ and cutwidth decompositions of cutwidth $ctw$ are given as input along with the input graph on $n$ vertices and point $(x,y)$. To obtain these results, we refine the existing reductions that were instrumental for the seminal dichotomy by Jaeger, Welsh and Vertigan~[Math. Proc. Cambridge Philos. Soc'90]. One of our technical contributions is a new rank bound of a matrix that indicates whether the union of two forests is a forest itself, which we use to show that the number of forests of a graph can be counted in $2{O(tw)}n{O(1)}$ time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Artur Andrzejak. An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discret. Math., 190(1-3):39–54, 1998. doi:10.1016/S0012-365X(98)00113-7.
  2. Rodney J. Baxter. Exactly Solved Models in Statistical Mechanics, pages 5–63. URL: https://www.worldscientific.com/doi/abs/10.1142/9789814415255_0002, arXiv:https://www.worldscientific.com/doi/pdf/10.1142/9789814415255_0002, doi:10.1142/9789814415255_0002.
  3. Computing the Tutte polynomial in vertex-exponential time. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 677–686. IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.40.
  4. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.
  5. Fine-grained dichotomies for the Tutte plane and Boolean #csp. Algorithmica, 81(2):541–556, 2019. doi:10.1007/s00453-018-0472-z.
  6. Thomas H Brylawski. The Tutte polynomial. In Matroid Theory and Its Applications: Lectures Given at the Centro Internazionale Matematico Estivo. Varenna (como), Italy, 1980.
  7. Introduction to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/introduction-algorithms.
  8. Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus, pages 1650–1669. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch113, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611974331.ch113, doi:10.1137/1.9781611974331.ch113.
  9. Fast Hamiltonicity checking via bases of perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.
  10. Solving connectivity problems parameterized by treewidth in single exponential time, 2011. URL: https://arxiv.org/abs/1103.0534, doi:10.48550/ARXIV.1103.0534.
  11. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.
  12. Exponential time complexity of the permanent and the Tutte polynomial. ACM Transactions on Algorithms, 10(4):1–32, aug 2014. URL: https://doi.org/10.1145%2F2635812, doi:10.1145/2635812.
  13. Tight Bounds for Counting Colorings and Connected Edge Sets Parameterized by Cutwidth. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), pages 36:1–36:20, 2022. URL: https://arxiv.org/abs/2110.02730, doi:10.48550/ARXIV.2110.02730.
  14. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.
  15. On the computational complexity of the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society, 108(1):35–53, 1990. doi:10.1017/S0305004100068936.
  16. Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph coloring problems. Discret. Appl. Math., 327:33–46, 2023. doi:10.1016/j.dam.2022.11.011.
  17. Mark Jerrum. Two-dimensional monomer-dimer systems are computationally intractable. Journal of Statistical Physics, 48(1-2):121–134, July 1987. doi:10.1007/BF01010403.
  18. P.W. Kasteleyn and F. Harary. Graph Theory and Theoretical Physics, chapter Graph theory and crystal physics, pages 43–110. 1967. arXiv:https://doi.org/10.1063/1.3035700, doi:10.1063/1.3035700.
  19. Phase transitions for the Ising model on the closed Cayley tree. Physica A: Statistical Mechanics and its Applications, 119(1):230–242, 1983. URL: https://www.sciencedirect.com/science/article/pii/0378437183901577, doi:https://doi.org/10.1016/0378-4371(83)90157-7.
  20. Slightly superexponential parameterized problems. SIAM J. Comput., 47(3):675–702, 2018. doi:10.1137/16M1104834.
  21. Steven D. Noble. Evaluating the Tutte polynomial for graphs of bounded tree-width. Comb. Probab. Comput., 7(3):307–321, 1998. URL: http://journals.cambridge.org/action/displayAbstract?aid=46641.
  22. Xin-Zhuang Chen Peng-Fei Wan. Computing the number of k𝑘kitalic_k-component spanning forests of a graph with bounded treewidth. Journal of the Operations Research Society of China, 7(2):385, 2019. URL: https://www.jorsc.shu.edu.cn/EN/abstract/article_11289.shtml, doi:10.1007/s40305-019-00241-4.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.