Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation (2307.00997v3)

Published 3 Jul 2023 in cs.CV and cs.AI

Abstract: The Segment Anything Model (SAM) has gained significant attention for its impressive performance in image segmentation. However, it lacks proficiency in referring video object segmentation (RVOS) due to the need for precise user-interactive prompts and a limited understanding of different modalities, such as language and vision. This paper presents the RefSAM model, which explores the potential of SAM for RVOS by incorporating multi-view information from diverse modalities and successive frames at different timestamps in an online manner. Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-Modal MLP that projects the text embedding of the referring expression into sparse and dense embeddings, serving as user-interactive prompts. Additionally, we have introduced the hierarchical dense attention module to fuse hierarchical visual semantic information with sparse embeddings to obtain fine-grained dense embeddings, and an implicit tracking module to generate a tracking token and provide historical information for the mask decoder. Furthermore, we employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively. Through comprehensive ablation studies, we demonstrate our model's practical and effective design choices. Extensive experiments conducted on Refer-Youtube-VOS, Ref-DAVIS17, and three referring image segmentation datasets validate the superiority and effectiveness of our RefSAM model over existing methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub