Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Reduced-Complexity Cross-Domain Iterative Detection for OTFS Modulation via Delay-Doppler Decoupling (2307.00926v1)

Published 3 Jul 2023 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, a reduced-complexity cross-domain iterative detection for orthogonal time frequency space (OTFS) modulation is proposed, which exploits channel properties in both time and delay-Doppler domains. Specifically, we first show that in the time domain effective channel, the path delay only introduces interference among samples in adjacent time slots, while the Doppler becomes a phase term that does not affect the channel sparsity. This ``band-limited'' matrix structure motivates us to apply a reduced-size linear minimum mean square error (LMMSE) filter to eliminate the effect of delay in the time domain, while exploiting the cross-domain iteration for minimizing the effect of Doppler by noticing that the time and Doppler are a pair of Fourier dual. The state (MSE) evolution was derived and compared with bounds to verify the effectiveness of the proposed scheme. Simulation results demonstrate that the proposed scheme achieves almost the same error performance as the optimal detection, but only requires a reduced complexity.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube