Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers (2307.00631v1)

Published 2 Jul 2023 in cs.LG and math.OC

Abstract: Optimizer is an essential component for the success of deep learning, which guides the neural network to update the parameters according to the loss on the training set. SGD and Adam are two classical and effective optimizers on which researchers have proposed many variants, such as SGDM and RAdam. In this paper, we innovatively combine the backward-looking and forward-looking aspects of the optimizer algorithm and propose a novel \textsc{Admeta} (\textbf{A} \textbf{D}ouble exponential \textbf{M}oving averag\textbf{E} \textbf{T}o \textbf{A}daptive and non-adaptive momentum) optimizer framework. For backward-looking part, we propose a DEMA variant scheme, which is motivated by a metric in the stock market, to replace the common exponential moving average scheme. While in the forward-looking part, we present a dynamic lookahead strategy which asymptotically approaches a set value, maintaining its speed at early stage and high convergence performance at final stage. Based on this idea, we provide two optimizer implementations, \textsc{AdmetaR} and \textsc{AdmetaS}, the former based on RAdam and the latter based on SGDM. Through extensive experiments on diverse tasks, we find that the proposed \textsc{Admeta} optimizer outperforms our base optimizers and shows advantages over recently proposed competitive optimizers. We also provide theoretical proof of these two algorithms, which verifies the convergence of our proposed \textsc{Admeta}.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.