Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A region and category confidence-based multi-task network for carotid ultrasound image segmentation and classification (2307.00583v2)

Published 2 Jul 2023 in eess.IV and cs.CV

Abstract: The segmentation and classification of carotid plaques in ultrasound images play important roles in the treatment of atherosclerosis and assessment for the risk of stroke. Although deep learning methods have been used for carotid plaque segmentation and classification, two-stage methods will increase the complexity of the overall analysis and the existing multi-task methods ignored the relationship between the segmentation and classification. These will lead to suboptimal performance as valuable information might not be fully leveraged across all tasks. Therefore, we propose a multi-task learning framework (RCCM-Net) for ultrasound carotid plaque segmentation and classification, which utilizes a region confidence module (RCM) and a sample category confidence module (CCM) to exploit the correlation between these two tasks. The RCM provides knowledge from the probability of plaque regions to the classification task, while the CCM is designed to learn the categorical sample weight for the segmentation task. A total of 1270 2D ultrasound images of carotid plaques were collected from Zhongnan Hospital (Wuhan, China) for our experiments. The results showed that the proposed method can improve both segmentation and classification performance compared to existing single-task networks (i.e., SegNet, Deeplabv3+, UNet++, EfficientNet, Res2Net, RepVGG, DPN) and multi-task algorithms (i.e., HRNet, MTANet), with an accuracy of 85.82% for classification and a Dice-similarity-coefficient of 84.92% for segmentation. In the ablation study, the results demonstrated that both the designed RCM and CCM were beneficial in improving the network's performance. Therefore, we believe that the proposed method could be useful for carotid plaque analysis in clinical trials and practice.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.