Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Is Risk-Sensitive Reinforcement Learning Properly Resolved? (2307.00547v1)

Published 2 Jul 2023 in cs.LG

Abstract: Due to the nature of risk management in learning applicable policies, risk-sensitive reinforcement learning (RSRL) has been realized as an important direction. RSRL is usually achieved by learning risk-sensitive objectives characterized by various risk measures, under the framework of distributional reinforcement learning. However, it remains unclear if the distributional Bellman operator properly optimizes the RSRL objective in the sense of risk measures. In this paper, we prove that the existing RSRL methods do not achieve unbiased optimization and can not guarantee optimality or even improvements regarding risk measures over accumulated return distributions. To remedy this issue, we further propose a novel algorithm, namely Trajectory Q-Learning (TQL), for RSRL problems with provable convergence to the optimal policy. Based on our new learning architecture, we are free to introduce a general and practical implementation for different risk measures to learn disparate risk-sensitive policies. In the experiments, we verify the learnability of our algorithm and show how our method effectively achieves better performances toward risk-sensitive objectives.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.