Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Forward-Forward Algorithm for Hyperspectral Image Classification: A Preliminary Study (2307.00231v1)

Published 1 Jul 2023 in cs.CV, cs.AI, and cs.LG

Abstract: The back-propagation algorithm has long been the de-facto standard in optimizing weights and biases in neural networks, particularly in cutting-edge deep learning models. Its widespread adoption in fields like natural language processing, computer vision, and remote sensing has revolutionized automation in various tasks. The popularity of back-propagation stems from its ability to achieve outstanding performance in tasks such as classification, detection, and segmentation. Nevertheless, back-propagation is not without its limitations, encompassing sensitivity to initial conditions, vanishing gradients, overfitting, and computational complexity. The recent introduction of a forward-forward algorithm (FFA), which computes local goodness functions to optimize network parameters, alleviates the dependence on substantial computational resources and the constant need for architectural scaling. This study investigates the application of FFA for hyperspectral image classification. Experimental results and comparative analysis are provided with the use of the traditional back-propagation algorithm. Preliminary results show the potential behind FFA and its promises.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
  2. A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Computers and electronics in agriculture, vol. 147, pp. 70–90, 2018.
  3. M. Maimaitijiang, V. Sagan, P. Sidike, S. Hartling, F. Esposito, and F. B. Fritschi, “Soybean yield prediction from uav using multimodal data fusion and deep learning,” Remote sensing of environment, vol. 237, p. 111599, 2020.
  4. T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P. Way, E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman, et al., “Opportunities and obstacles for deep learning in biology and medicine,” Journal of The Royal Society Interface, vol. 15, no. 141, p. 20170387, 2018.
  5. S. Mahdavifar and A. A. Ghorbani, “Application of deep learning to cybersecurity: A survey,” Neurocomputing, vol. 347, pp. 149–176, 2019.
  6. D. Bourilkov, “Machine and deep learning applications in particle physics,” International Journal of Modern Physics A, vol. 34, no. 35, p. 1930019, 2019.
  7. U. Khan, S. Paheding, C. P. Elkin, and V. K. Devabhaktuni, “Trends in deep learning for medical hyperspectral image analysis,” IEEE Access, vol. 9, pp. 79534–79548, 2021.
  8. N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-net and its variants for medical image segmentation: A review of theory and applications,” Ieee Access, vol. 9, pp. 82031–82057, 2021.
  9. M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, “Deep learning applications and challenges in big data analytics,” Journal of big data, vol. 2, no. 1, pp. 1–21, 2015.
  10. M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan, B. C. Van Essen, A. A. Awwal, and V. K. Asari, “A state-of-the-art survey on deep learning theory and architectures,” electronics, vol. 8, no. 3, p. 292, 2019.
  11. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  12. W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks for hyperspectral image classification,” Journal of Sensors, vol. 2015, pp. 1–12, 2015.
  13. S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep learning for hyperspectral image classification: An overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 6690–6709, 2019.
  14. R. S. Sexton and J. N. Gupta, “Comparative evaluation of genetic algorithm and backpropagation for training neural networks,” Information sciences, vol. 129, no. 1-4, pp. 45–59, 2000.
  15. G. Hinton, “The forward-forward algorithm: Some preliminary investigations,” arXiv preprint arXiv:2212.13345, 2022.
  16. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.
  17. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” tech. rep., California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube