Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Multigrid Methods using Block Floating Point Arithmetic (2307.00124v1)

Published 30 Jun 2023 in math.NA and cs.NA

Abstract: Block Floating Point (BFP) arithmetic is currently seeing a resurgence in interest because it requires less power, less chip area, and is less complicated to implement in hardware than standard floating point arithmetic. This paper explores the application of BFP to mixed- and progressive-precision multigrid methods, enabling the solution of linear elliptic partial differential equations (PDEs) in energy- and hardware-efficient integer arithmetic. While most existing applications of BFP arithmetic tend to use small block sizes, the block size here is chosen to be maximal such that matrices and vectors share a single exponent for all entries. This is sometimes also referred to as a scaled fixed-point format. We provide algorithms for BLAS-like routines for BFP arithmetic that ensure exact vector-vector and matrix-vector computations up to a specified precision. Using these algorithms, we study the asymptotic precision requirements to achieve discretization-error-accuracy. We demonstrate that some computations can be performed using as little as 4-bit integers, while the number of bits required to attain a certain target accuracy is similar to that of standard floating point arithmetic. Finally, we present a heuristic for full multigrid in BFP arithmetic based on saturation and truncation that still achieves discretization-error-accuracy without the need for expensive normalization steps of intermediate results.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube