Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving the Transferability of Time Series Forecasting with Decomposition Adaptation (2307.00066v1)

Published 30 Jun 2023 in cs.LG

Abstract: Due to effective pattern mining and feature representation, neural forecasting models based on deep learning have achieved great progress. The premise of effective learning is to collect sufficient data. However, in time series forecasting, it is difficult to obtain enough data, which limits the performance of neural forecasting models. To alleviate the data scarcity limitation, we design Sequence Decomposition Adaptation Network (SeDAN) which is a novel transfer architecture to improve forecasting performance on the target domain by aligning transferable knowledge from cross-domain datasets. Rethinking the transferability of features in time series data, we propose Implicit Contrastive Decomposition to decompose the original features into components including seasonal and trend features, which are easier to transfer. Then we design the corresponding adaptation methods for decomposed features in different domains. Specifically, for seasonal features, we perform joint distribution adaptation and for trend features, we design an Optimal Local Adaptation. We conduct extensive experiments on five benchmark datasets for multivariate time series forecasting. The results demonstrate the effectiveness of our SeDAN. It can provide more efficient and stable knowledge transfer.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.