Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zespol: A Lightweight Environment for Training Swarming Agents (2306.17744v1)

Published 30 Jun 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Agent-based modeling (ABM) and simulation have emerged as important tools for studying emergent behaviors, especially in the context of swarming algorithms for robotic systems. Despite significant research in this area, there is a lack of standardized simulation environments, which hinders the development and deployment of real-world robotic swarms. To address this issue, we present Zespol, a modular, Python-based simulation environment that enables the development and testing of multi-agent control algorithms. Zespol provides a flexible and extensible sandbox for initial research, with the potential for scaling to real-world applications. We provide a topological overview of the system and detailed descriptions of its plug-and-play elements. We demonstrate the fidelity of Zespol in simulated and real-word robotics by replicating existing works highlighting the simulation to real gap with the milling behavior. We plan to leverage Zespol's plug-and-play feature for neuromorphic computing in swarming scenarios, which involves using the modules in Zespol to simulate the behavior of neurons and their connections as synapses. This will enable optimizing and studying the emergent behavior of swarm systems in complex environments. Our goal is to gain a better understanding of the interplay between environmental factors and neural-like computations in swarming systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Amit Adate and BK Tripathy. 2022. A survey on deep learning methodologies of recent applications. Deep learning in data analytics: Recent techniques, practices and applications (2022), 145–170.
  2. The Java programming language. Addison Wesley Professional.
  3. Nengo: a Python tool for building large-scale functional brain models. Frontiers in Neuroinformatics 7, 48 (2014), 1–13. https://doi.org/10.3389/fninf.2013.00048
  4. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research 47 (2013), 253–279.
  5. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm. Science Robotics 6, 50 (2021).
  6. VMAS: A Vectorized Multi-Agent Simulator for Collective Robot Learning. arXiv preprint arXiv:2207.03530 (2022).
  7. OpenAI Gym. CoRR abs/1606.01540 (2016). arXiv:1606.01540 http://arxiv.org/abs/1606.01540
  8. Discovery and Exploration of Novel Swarm Behaviors Given Limited Robot Capabilities. In International Symposium on Distributed Autonomous Robotic Systems.
  9. Discovery and exploration of novel swarm behaviors given limited robot capabilities. In Distributed Autonomous Robotic Systems. Springer, 447–460.
  10. Erin Catto. 2023. Box2d: A 2d physics engine for games. URL: http://www. box2d. org (2023).
  11. Swarm-sim: A 2d & 3d simulation core for swarm agents. In 2020 3rd International Conference on Intelligent Robotic and Control Engineering (IRCE). IEEE, 1–10.
  12. Library for evolutionary algorithms in Python (LEAP). In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. 1571–1579.
  13. Dask Development Team. 2016. Dask: Library for dynamic task scheduling. https://dask.org
  14. The biological principles of swarm intelligence. Swarm intelligence 1, 1 (2007), 3–31.
  15. Guerrilla performance analysis for robot swarms: Degrees of collaboration and chains of interference events. In International Conference on Swarm Intelligence. Springer, 134–147.
  16. Rasika M Harshey. 1994. Bees aren’t the only ones: swarming in Gram-negative bacteria. Molecular microbiology 13, 3 (1994), 389–394.
  17. J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55
  18. Deep Learning in Robotics: Survey on Model Structures and Training Strategies. IEEE Transactions on Systems, Man, and Cybernetics: Systems 51, 1 (2021), 266–279. https://doi.org/10.1109/TSMC.2020.3018325 Liang et al. (2018) Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin, and Dieter Fox. 2018. GPU-Accelerated Robotic Simulation for Distributed Reinforcement Learning. CoRR abs/1810.05762 (2018). arXiv:1810.05762 http://arxiv.org/abs/1810.05762 Luke et al. (2014) S. Luke, K. Andrea, M. Bowen, D. Fleming, K. Sullivan, B. Hrolenok, C. Vo, A. Bovill, R. Steck, B. Davidson, et al. 2014. The Flockbots. Open specification. Available at http://cs. gmu. edu/  eclab/projects/robots/flockbots (2014). Luke et al. (2005) Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin, and Dieter Fox. 2018. GPU-Accelerated Robotic Simulation for Distributed Reinforcement Learning. CoRR abs/1810.05762 (2018). arXiv:1810.05762 http://arxiv.org/abs/1810.05762 Luke et al. (2014) S. Luke, K. Andrea, M. Bowen, D. Fleming, K. Sullivan, B. Hrolenok, C. Vo, A. Bovill, R. Steck, B. Davidson, et al. 2014. The Flockbots. Open specification. Available at http://cs. gmu. edu/  eclab/projects/robots/flockbots (2014). Luke et al. (2005) Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ S. Luke, K. Andrea, M. Bowen, D. Fleming, K. Sullivan, B. Hrolenok, C. Vo, A. Bovill, R. Steck, B. Davidson, et al. 2014. The Flockbots. Open specification. Available at http://cs. gmu. edu/  eclab/projects/robots/flockbots (2014). Luke et al. (2005) Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  19. GPU-Accelerated Robotic Simulation for Distributed Reinforcement Learning. CoRR abs/1810.05762 (2018). arXiv:1810.05762 http://arxiv.org/abs/1810.05762 Luke et al. (2014) S. Luke, K. Andrea, M. Bowen, D. Fleming, K. Sullivan, B. Hrolenok, C. Vo, A. Bovill, R. Steck, B. Davidson, et al. 2014. The Flockbots. Open specification. Available at http://cs. gmu. edu/  eclab/projects/robots/flockbots (2014). Luke et al. (2005) Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ S. Luke, K. Andrea, M. Bowen, D. Fleming, K. Sullivan, B. Hrolenok, C. Vo, A. Bovill, R. Steck, B. Davidson, et al. 2014. The Flockbots. Open specification. Available at http://cs. gmu. edu/  eclab/projects/robots/flockbots (2014). Luke et al. (2005) Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  20. The Flockbots. Open specification. Available at http://cs. gmu. edu/  eclab/projects/robots/flockbots (2014). Luke et al. (2005) Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. 2005. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  21. Mason: A multiagent simulation environment. Simulation 81, 7 (2005), 517–527. Majid et al. (2022) MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MHA Majid, MR Arshad, and RM Mokhtar. 2022. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  22. Swarm robotics behaviors and tasks: a technical review. Control Engineering in Robotics and Industrial Automation: Malaysian Society for Automatic Control Engineers (MACE) Technical Series 2018 (2022), 99–167. MATLAB (2010) MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  23. MATLAB. 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts. Mitchell et al. (2020) J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ J. Parker Mitchell, Catherine D. Schuman, Robert M. Patton, and Thomas E. Potok. 2020. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  24. Caspian: A Neuromorphic Development Platform. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/3381755.3381764 Nowzari and Cortés (2012) C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  25. C. Nowzari and J. Cortés. 2012. Self-triggered coordination of robotic networks for optimal deployment. Automatica 48, 6 (2012), 1077–1087. https://doi.org/10.1016/j.automatica.2012.03.009 Nowzari and Pappas (2016) Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  26. Cameron Nowzari and George J. Pappas. 2016. Multi-Agent Coordination with Asynchronous Cloud Access. In 2016 American Control Conference (ACC) (2016-07). 4649–4654. https://doi.org/10.1109/ACC.2016.7526085 Parsa et al. (2021) Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Maryam Parsa, Shruti R Kulkarni, Mark Coletti, Jeffrey Bassett, J Parker Mitchell, and Catherine D Schuman. 2021. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  27. Multi-Objective Hyperparameter Optimization for Spiking Neural Network Neuroevolution. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1225–1232. Plank et al. (2018) James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ James S. Plank, Catherine D. Schuman, Grant Bruer, Mark E. Dean, and Garrett S. Rose. 2018. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  28. The TENNLab Exploratory Neuromorphic Computing Framework. IEEE Letters of the Computer Society 1, 2 (2018), 17–20. https://doi.org/10.1109/LOCS.2018.2885976 Schuman et al. (2022) Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  29. Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science 2, 1 (Jan 2022), 10–19. https://doi.org/10.1038/s43588-021-00184-y Schuman et al. (2020) Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Catherine D. Schuman, J. Parker Mitchell, Robert M. Patton, Thomas E. Potok, and James S. Plank. 2020. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  30. Evolutionary Optimization for Neuromorphic Systems. In Proceedings of the 2020 Annual Neuro-Inspired Computational Elements Workshop (Heidelberg, Germany) (NICE ’20). Association for Computing Machinery, New York, NY, USA, Article 2, 9 pages. https://doi.org/10.1145/3381755.3381758 Soria et al. (2020a) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020a. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  31. SwarmLab: A MATLAB drone swarm simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 8005–8011. Soria et al. (2020b) Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Enrica Soria, Fabrizio Schiano, and Dario Floreano. 2020b. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  32. SwarmLab: a Matlab Drone Swarm Simulator. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 8005–8011. https://doi.org/10.1109/IROS45743.2020.9340854 Tzanetos and Dounias (2020) Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  33. Alexandros Tzanetos and Georgios Dounias. 2020. A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. Machine Learning Paradigms (2020), 337–378. Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  34. Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. Vásárhelyi et al. (2018) G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A.E. Eiben, and T. Vicsek. 2018. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  35. Optimized flocking of autonomous drones in confined environments. Science Robotics 3, 20 (2018), eaat3536. Vega et al. (2023) Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ Ricardo Vega, Kevin Zhu, Sean Luke, Maryam Parsa, and Cameron Nowzari. 2023. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  36. Simulate Less, Expect More: Bringing Robot Swarms to Life via Low-Fidelity Simulations. https://doi.org/10.48550/ARXIV.2301.09018 Wilensky (1999) U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/ U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
  37. U. Wilensky. 1999. NetLogo. Northwestern University, Evanston, IL, USA. http://ccl.northwestern.edu/netlogo/
Citations (1)

Summary

We haven't generated a summary for this paper yet.