Papers
Topics
Authors
Recent
2000 character limit reached

Landmark Guided Active Exploration with State-specific Balance Coefficient (2306.17484v2)

Published 30 Jun 2023 in cs.LG

Abstract: Goal-conditioned hierarchical reinforcement learning (GCHRL) decomposes long-horizon tasks into sub-tasks through a hierarchical framework and it has demonstrated promising results across a variety of domains. However, the high-level policy's action space is often excessively large, presenting a significant challenge to effective exploration and resulting in potentially inefficient training. In this paper, we design a measure of prospect for sub-goals by planning in the goal space based on the goal-conditioned value function. Building upon the measure of prospect, we propose a landmark-guided exploration strategy by integrating the measures of prospect and novelty which aims to guide the agent to explore efficiently and improve sample efficiency. In order to dynamically consider the impact of prospect and novelty on exploration, we introduce a state-specific balance coefficient to balance the significance of prospect and novelty. The experimental results demonstrate that our proposed exploration strategy significantly outperforms the baseline methods across multiple tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.