Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Recognizing $\mathbf{W_2}$ Graphs (2306.17272v1)

Published 29 Jun 2023 in math.CO and cs.DM

Abstract: Let $G$ be a graph. A set $S \subseteq V(G)$ is independent if its elements are pairwise non-adjacent. A vertex $v \in V(G)$ is shedding if for every independent set $S \subseteq V(G) \setminus N[v]$ there exists $u \in N(v)$ such that $S \cup {u}$ is independent. An independent set $S$ is maximal if it is not contained in another independent set. An independent set $S$ is maximum if the size of every independent set of $G$ is not bigger than $|S|$. The size of a maximum independent set of $G$ is denoted $\alpha(G)$. A graph $G$ is well-covered if all its maximal independent sets are maximum, i.e. the size of every maximal independent set is $\alpha(G)$. The graph $G$ belongs to class $\mathbf{W_2}$ if every two pairwise disjoint independent sets in $G$ are included in two pairwise disjoint maximum independent sets. If a graph belongs to the class $\mathbf{W_2}$ then it is well-covered. Finding a maximum independent set in an input graph is an NP-complete problem. Recognizing well-covered graphs is co-NP-complete. The complexity status of deciding whether an input graph belongs to the $\mathbf{W_2}$ class is not known. Even when the input is restricted to well-covered graphs, the complexity status of recognizing graphs in $\mathbf{W_2}$ is not known. In this article, we investigate the connection between shedding vertices and $\mathbf{W_2}$ graphs. On the one hand, we prove that recognizing shedding vertices is co-NP-complete. On the other hand, we find polynomial solutions for restricted cases of the problem. We also supply polynomial characterizations of several families of $\mathbf{W_2}$ graphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube