Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Adaptive Latent Entity Expansion for Document Retrieval (2306.17082v2)

Published 29 Jun 2023 in cs.IR

Abstract: Despite considerable progress in neural relevance ranking techniques, search engines still struggle to process complex queries effectively - both in terms of precision and recall. Sparse and dense Pseudo-Relevance Feedback (PRF) approaches have the potential to overcome limitations in recall, but are only effective with high precision in the top ranks. In this work, we tackle the problem of search over complex queries using three complementary techniques. First, we demonstrate that applying a strong neural re-ranker before sparse or dense PRF can improve the retrieval effectiveness by 5-8%. This improvement in PRF effectiveness can be attributed directly to improving the precision of the feedback set. Second, we propose an enhanced expansion model, Latent Entity Expansion (LEE), which applies fine-grained word and entity-based relevance modelling incorporating localized features. Specifically, we find that by including both words and entities for expansion achieve a further 2-8% improvement in NDCG. Our analysis also demonstrated that LEE is largely robust to its parameters across datasets and performs well on entity-centric queries. And third, we include an 'adaptive' component in the retrieval process, which iteratively refines the re-ranking pool during scoring using the expansion model and avoids re-ranking additional documents. We find that this combination of techniques achieves the best NDCG, MAP and R@1000 results on the TREC Robust 2004 and CODEC document datasets, demonstrating a significant advancement in expansion effectiveness.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 9 likes.

Upgrade to Pro to view all of the tweets about this paper: