Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

5-Approximation for $\mathcal{H}$-Treewidth Essentially as Fast as $\mathcal{H}$-Deletion Parameterized by Solution Size (2306.17065v1)

Published 29 Jun 2023 in cs.DS and cs.CC

Abstract: The notion of $\mathcal{H}$-treewidth, where $\mathcal{H}$ is a hereditary graph class, was recently introduced as a generalization of the treewidth of an undirected graph. Roughly speaking, a graph of $\mathcal{H}$-treewidth at most $k$ can be decomposed into (arbitrarily large) $\mathcal{H}$-subgraphs which interact only through vertex sets of size $O(k)$ which can be organized in a tree-like fashion. $\mathcal{H}$-treewidth can be used as a hybrid parameterization to develop fixed-parameter tractable algorithms for $\mathcal{H}$-deletion problems, which ask to find a minimum vertex set whose removal from a given graph $G$ turns it into a member of $\mathcal{H}$. The bottleneck in the current parameterized algorithms lies in the computation of suitable tree $\mathcal{H}$-decompositions. We present FPT approximation algorithms to compute tree $\mathcal{H}$-decompositions for hereditary and union-closed graph classes $\mathcal{H}$. Given a graph of $\mathcal{H}$-treewidth $k$, we can compute a 5-approximate tree $\mathcal{H}$-decomposition in time $f(O(k)) \cdot n{O(1)}$ whenever $\mathcal{H}$-deletion parameterized by solution size can be solved in time $f(k) \cdot n{O(1)}$ for some function $f(k) \geq 2k$. The current-best algorithms either achieve an approximation factor of $k{O(1)}$ or construct optimal decompositions while suffering from non-uniformity with unknown parameter dependence. Using these decompositions, we obtain algorithms solving Odd Cycle Transversal in time $2{O(k)} \cdot n{O(1)}$ parameterized by $\mathsf{bipartite}$-treewidth and Vertex Planarization in time $2{O(k \log k)} \cdot n{O(1)}$ parameterized by $\mathsf{planar}$-treewidth, showing that these can be as fast as the solution-size parameterizations and giving the first ETH-tight algorithms for parameterizations by hybrid width measures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.