Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Exploring & Exploiting High-Order Graph Structure for Sparse Knowledge Graph Completion (2306.17034v1)

Published 29 Jun 2023 in cs.AI and cs.CL

Abstract: Sparse knowledge graph (KG) scenarios pose a challenge for previous Knowledge Graph Completion (KGC) methods, that is, the completion performance decreases rapidly with the increase of graph sparsity. This problem is also exacerbated because of the widespread existence of sparse KGs in practical applications. To alleviate this challenge, we present a novel framework, LR-GCN, that is able to automatically capture valuable long-range dependency among entities to supplement insufficient structure features and distill logical reasoning knowledge for sparse KGC. The proposed approach comprises two main components: a GNN-based predictor and a reasoning path distiller. The reasoning path distiller explores high-order graph structures such as reasoning paths and encodes them as rich-semantic edges, explicitly compositing long-range dependencies into the predictor. This step also plays an essential role in densifying KGs, effectively alleviating the sparse issue. Furthermore, the path distiller further distills logical reasoning knowledge from these mined reasoning paths into the predictor. These two components are jointly optimized using a well-designed variational EM algorithm. Extensive experiments and analyses on four sparse benchmarks demonstrate the effectiveness of our proposed method.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube