Papers
Topics
Authors
Recent
2000 character limit reached

Private Covariance Approximation and Eigenvalue-Gap Bounds for Complex Gaussian Perturbations (2306.16648v1)

Published 29 Jun 2023 in cs.DS, cs.CR, cs.LG, cs.NA, math.NA, and math.PR

Abstract: We consider the problem of approximating a $d \times d$ covariance matrix $M$ with a rank-$k$ matrix under $(\varepsilon,\delta)$-differential privacy. We present and analyze a complex variant of the Gaussian mechanism and show that the Frobenius norm of the difference between the matrix output by this mechanism and the best rank-$k$ approximation to $M$ is bounded by roughly $\tilde{O}(\sqrt{kd})$, whenever there is an appropriately large gap between the $k$'th and the $k+1$'th eigenvalues of $M$. This improves on previous work that requires that the gap between every pair of top-$k$ eigenvalues of $M$ is at least $\sqrt{d}$ for a similar bound. Our analysis leverages the fact that the eigenvalues of complex matrix Brownian motion repel more than in the real case, and uses Dyson's stochastic differential equations governing the evolution of its eigenvalues to show that the eigenvalues of the matrix $M$ perturbed by complex Gaussian noise have large gaps with high probability. Our results contribute to the analysis of low-rank approximations under average-case perturbations and to an understanding of eigenvalue gaps for random matrices, which may be of independent interest.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.