Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Non-Convex Optimizations for Machine Learning with Theoretical Guarantee: Robust Matrix Completion and Neural Network Learning (2306.16557v1)

Published 28 Jun 2023 in cs.LG and eess.SP

Abstract: Despite the recent development in machine learning, most learning systems are still under the concept of "black box", where the performance cannot be understood and derived. With the rise of safety and privacy concerns in public, designing an explainable learning system has become a new trend in machine learning. In general, many machine learning problems are formulated as minimizing (or maximizing) some loss function. Since real data are most likely generated from non-linear models, the loss function is non-convex in general. Unlike the convex optimization problem, gradient descent algorithms will be trapped in spurious local minima in solving non-convex optimization. Therefore, it is challenging to provide explainable algorithms when studying non-convex optimization problems. In this thesis, two popular non-convex problems are studied: (1) low-rank matrix completion and (2) neural network learning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)