Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Path Planning with Potential Field-Based Obstacle Avoidance in a 3D Environment by an Unmanned Aerial Vehicle (2306.16276v1)

Published 28 Jun 2023 in cs.RO

Abstract: In this paper we address the problem of path planning in an unknown environment with an aerial robot. The main goal is to safely follow the planned trajectory by avoiding obstacles. The proposed approach is suitable for aerial vehicles equipped with 3D sensors, such as LiDARs. It performs obstacle avoidance in real time and on an on-board computer. We present a novel algorithm based on the conventional Artifcial Potential Field (APF) that corrects the planned trajectory to avoid obstacles. To this end, our modifed algorithm uses a rotation-based component to avoid local minima. The smooth trajectory following, achieved with the MPC tracker, allows us to quickly change and re-plan the UAV trajectory. Comparative experiments in simulation have shown that our approach solves local minima problems in trajectory planning and generates more effcient paths to avoid potential collisions with static obstacles compared to the original APF method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis, “A review on uav-based applications for precision agriculture,” Information, vol. 10, no. 11, 2019.
  2. M. Car, L. Markovic, A. Ivanovic, M. Orsag, and S. Bogdan, “Autonomous wind-turbine blade inspection using lidar-equipped unmanned aerial vehicle,” IEEE Access, vol. 8, pp. 131380–131387, 2020.
  3. W. W. Greenwood, J. P. Lynch, and D. Zekkos, “Applications of uavs in civil infrastructure,” Journal of Infrastructure Systems, vol. 25, no. 2, p. 04019002, 2019.
  4. H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges,” IEEE Access, vol. 7, pp. 48572–48634, 2019.
  5. A. Batinovic, T. Petrovic, A. Ivanovic, F. Petric, and S. Bogdan, “A multi-resolution frontier-based planner for autonomous 3D exploration,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4528–4535, 2021.
  6. M. Radmanesh, M. Kumar, P. Guentert, and M. Sarim, “Overview of path-planning and obstacle avoidance algorithms for uavs: A comparative study,” Unmanned Systems, vol. 6, no. 2, pp. 95–118, 2018.
  7. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Autonomous Robot Vehicles, pp. 396–404, Springer New York, 1986.
  8. K. L. Daegyun Choi and D. Kim, “Enhanced potential field-based collision avoidance for unmanned aerial vehicles in a dynamic environment,” AIAA Scitech 2020 Forum, 2020.
  9. J. N. Yasin, S. A. S. Mohamed, M.-H. Haghbayan, J. Heikkonen, H. Tenhunen, and J. Plosila, “Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches,” IEEE Access, vol. 8, pp. 105139–105155, 2020.
  10. X. Gao, H. Wu, L. Zhai, H. Sun, Q. Jia, Y. Wang, and L. Wu, “A rapidly exploring random tree optimization algorithm for space robotic manipulators guided by obstacle avoidance independent potential field,” International Journal of Advanced Robotic Systems, vol. 15, no. 3, 2018.
  11. W. Xinyu, L. Xiaojuan, G. Yong, S. Jiadong, and W. Rui, “Bidirectional potential guided rrt* for motion planning,” IEEE Access, vol. 7, pp. 95046–95057, 2019.
  12. A. A. Ahmed, T. Y. Abdalla, and A. A. Abed, “Path planning of mobile robot by using modified optimized potential field method,” International Journal of Computer Applications, vol. 113, pp. 6–10, 2015.
  13. J. Sun, J. Tang, and S. Lao, “Collision avoidance for cooperative uavs with optimized artificial potential field algorithm,” IEEE Access, vol. 5, pp. 18382–18390, 2017.
  14. T. Weerakoon, K. Ishii, and A. A. F. Nassiraei, “An artificial potential field based mobile robot navigation method to prevent from deadlock,” Journal of Artificial Intelligence and Soft Computing Research, vol. 5, no. 3, pp. 189–203, 2015.
  15. P. Sudhakara, V. Ganapathy, B. Priyadharshini, and K. Sundaran, “Obstacle avoidance and navigation planning of a wheeled mobile robot using amended artificial potential field method,” Procedia Computer Science, vol. 133, pp. 998–1004, 2018.
  16. T. T. Mac, C. Copot, A. Hernandez, and R. De Keyser, “Improved potential field method for unknown obstacle avoidance using uav in indoor environment,” in IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 345–350, 2016.
  17. L. Zhu, X. Cheng, and F.-G. Yuan, “A 3d collision avoidance strategy for uav with physical constraints,” Measurement, vol. 77, pp. 40–49, 2016.
  18. H.-T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia, “Path-guided artificial potential fields with stochastic reachable sets for motion planning in highly dynamic environments,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2347–2354, 2015.
  19. S. Patil, J. van den Berg, S. Curtis, M. C. Lin, and D. Manocha, “Directing crowd simulations using navigation fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 2, pp. 244–254, 2011.
  20. L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on configuration-space costmaps,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 635–646, 2010.
  21. S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma, “Flying fast and low among obstacles: Methodology and experiments,” The International Journal of Robotics Research, vol. 27, no. 5, pp. 549–574, 2008.
  22. X. Chen and J. Zhang, “The three-dimension path planning of uav based on improved artificial potential field in dynamic environment,” 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 2, pp. 144–147, 2013.
  23. K. Movric, S. Bogdan, and I. Draganjac, “Multi-agent formation control based on bell-shaped potential functions,” Journal of Intelligent and Robotic Systems, vol. 58, pp. 165–189, 05 2010.
  24. E. Oland and R. Kristiansen, “Collision and terrain avoidance for uavs using the potential field method,” in 2013 IEEE Aerospace Conference, pp. 1–7, 2013.
  25. T. P. Nascimento, A. G. Conceicao, and A. P. Moreira, “Multi-robot systems formation control with obstacle avoidance,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 5703–5708, 2014.
  26. Z. Zhang, Q. Ling, and Z. Yang, “Formation control with obstacle avoidance of multi-robot systems with second-order dynamics,” in 2019 Chinese Control Conference (CCC), pp. 5978–5983, 2019.
  27. H. Rezaee and F. Abdollahi, “Adaptive artificial potential field approach for obstacle avoidance of unmanned aircrafts,” 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1–6, 2012.
  28. H. Pham and Q. Pham, “A new approach to time-optimal path parameterization based on reachability analysis,” IEEE Transactions on Robotics, vol. 34, no. 3, pp. 645–659, 2018.
  29. R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE International Conference on Robotics and Automation (ICRA), (Shanghai, China), May 9-13 2011.
  30. T. Baca, D. Hert, G. Loianno, M. Saska, and V. Kumar, “Model predictive trajectory tracking and collision avoidance for reliable outdoor deployment of unmanned aerial vehicles,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6753–6760, 2018.
Citations (12)

Summary

We haven't generated a summary for this paper yet.