Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

High-Quality Unknown Object Instance Segmentation via Quadruple Boundary Error Refinement (2306.16132v5)

Published 28 Jun 2023 in cs.CV and cs.RO

Abstract: Accurate and efficient segmentation of unknown objects in unstructured environments is essential for robotic manipulation. Unknown Object Instance Segmentation (UOIS), which aims to identify all objects in unknown categories and backgrounds, has become a key capability for various robotic tasks. However, existing methods struggle with over-segmentation and under-segmentation, leading to failures in manipulation tasks such as grasping. To address these challenges, we propose QuBER (Quadruple Boundary Error Refinement), a novel error-informed refinement approach for high-quality UOIS. QuBER first estimates quadruple boundary errors-true positive, true negative, false positive, and false negative pixels-at the instance boundaries of the initial segmentation. It then refines the segmentation using an error-guided fusion mechanism, effectively correcting both fine-grained and instance-level segmentation errors. Extensive evaluations on three public benchmarks demonstrate that QuBER outperforms state-of-the-art methods and consistently improves various UOIS methods while maintaining a fast inference time of less than 0.1 seconds. Furthermore, we show that QuBER improves the success rate of grasping target objects in cluttered environments. Code and supplementary materials are available at https://sites.google.com/view/uois-quber.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: