Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Quality Unknown Object Instance Segmentation via Quadruple Boundary Error Refinement (2306.16132v5)

Published 28 Jun 2023 in cs.CV and cs.RO

Abstract: Accurate and efficient segmentation of unknown objects in unstructured environments is essential for robotic manipulation. Unknown Object Instance Segmentation (UOIS), which aims to identify all objects in unknown categories and backgrounds, has become a key capability for various robotic tasks. However, existing methods struggle with over-segmentation and under-segmentation, leading to failures in manipulation tasks such as grasping. To address these challenges, we propose QuBER (Quadruple Boundary Error Refinement), a novel error-informed refinement approach for high-quality UOIS. QuBER first estimates quadruple boundary errors-true positive, true negative, false positive, and false negative pixels-at the instance boundaries of the initial segmentation. It then refines the segmentation using an error-guided fusion mechanism, effectively correcting both fine-grained and instance-level segmentation errors. Extensive evaluations on three public benchmarks demonstrate that QuBER outperforms state-of-the-art methods and consistently improves various UOIS methods while maintaining a fast inference time of less than 0.1 seconds. Furthermore, we show that QuBER improves the success rate of grasping target objects in cluttered environments. Code and supplementary materials are available at https://sites.google.com/view/uois-quber.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com