Papers
Topics
Authors
Recent
2000 character limit reached

Prompting Large Language Models for Zero-Shot Domain Adaptation in Speech Recognition (2306.16007v1)

Published 28 Jun 2023 in cs.CL, eess.AS, and eess.SP

Abstract: The integration of LLMs (LMs) has proven to be an effective way to address domain shifts in speech recognition. However, these approaches usually require a significant amount of target domain text data for the training of LMs. Different from these methods, in this work, with only a domain-specific text prompt, we propose two zero-shot ASR domain adaptation methods using LLaMA, a 7-billion-parameter LLM. LLM is used in two ways: 1) second-pass rescoring: reranking N-best hypotheses of a given ASR system with LLaMA; 2) deep LLM-fusion: incorporating LLM into the decoder of an encoder-decoder based ASR system. Experiments show that, with only one domain prompt, both methods can effectively reduce word error rates (WER) on out-of-domain TedLium-2 and SPGISpeech datasets. Especially, the deep LLM-fusion has the advantage of better recall of entity and out-of-vocabulary words.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.