Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Streamlining Social Media Information Retrieval for COVID-19 Research with Deep Learning (2306.16001v3)

Published 28 Jun 2023 in cs.CL, cs.AI, and cs.IR

Abstract: Objective: Social media-based public health research is crucial for epidemic surveillance, but most studies identify relevant corpora with keyword-matching. This study develops a system to streamline the process of curating colloquial medical dictionaries. We demonstrate the pipeline by curating a UMLS-colloquial symptom dictionary from COVID-19-related tweets as proof of concept. Methods: COVID-19-related tweets from February 1, 2020, to April 30, 2022 were used. The pipeline includes three modules: a named entity recognition module to detect symptoms in tweets; an entity normalization module to aggregate detected entities; and a mapping module that iteratively maps entities to Unified Medical Language System concepts. A random 500 entity sample were drawn from the final dictionary for accuracy validation. Additionally, we conducted a symptom frequency distribution analysis to compare our dictionary to a pre-defined lexicon from previous research. Results: We identified 498,480 unique symptom entity expressions from the tweets. Pre-processing reduces the number to 18,226. The final dictionary contains 38,175 unique expressions of symptoms that can be mapped to 966 UMLS concepts (accuracy = 95%). Symptom distribution analysis found that our dictionary detects more symptoms and is effective at identifying psychiatric disorders like anxiety and depression, often missed by pre-defined lexicons. Conclusions: This study advances public health research by implementing a novel, systematic pipeline for curating symptom lexicons from social media data. The final lexicon's high accuracy, validated by medical professionals, underscores the potential of this methodology to reliably interpret and categorize vast amounts of unstructured social media data into actionable medical insights across diverse linguistic and regional landscapes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.