Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Disentangled Variational Auto-encoder Enhanced by Counterfactual Data for Debiasing Recommendation (2306.15961v1)

Published 28 Jun 2023 in cs.IR

Abstract: Recommender system always suffers from various recommendation biases, seriously hindering its development. In this light, a series of debias methods have been proposed in the recommender system, especially for two most common biases, i.e., popularity bias and amplified subjective bias. However, exsisting debias methods usually concentrate on correcting a single bias. Such single-functionality debiases neglect the bias-coupling issue in which the recommended items are collectively attributed to multiple biases. Besides, previous work cannot tackle the lacking supervised signals brought by sparse data, yet which has become a commonplace in the recommender system. In this work, we introduce a disentangled debias variational auto-encoder framework(DB-VAE) to address the single-functionality issue as well as a counterfactual data enhancement method to mitigate the adverse effect due to the data sparsity. In specific, DB-VAE first extracts two types of extreme items only affected by a single bias based on the collier theory, which are respectively employed to learn the latent representation of corresponding biases, thereby realizing the bias decoupling. In this way, the exact unbiased user representation can be learned by these decoupled bias representations. Furthermore, the data generation module employs Pearl's framework to produce massive counterfactual data, making up the lacking supervised signals due to the sparse data. Extensive experiments on three real-world datasets demonstrate the effectiveness of our proposed model. Besides, the counterfactual data can further improve DB-VAE, especially on the dataset with low sparsity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube