Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Divide-and-rule policy in the Naming Game (2306.15922v2)

Published 28 Jun 2023 in cs.SI

Abstract: The Naming Game is a classic model for studying the emergence and evolution of language within a population. In this paper, we extend the traditional Naming Game model to encompass multiple committed opinions and investigate the system dynamics on the complete graph with an arbitrarily large population and random networks of finite size. For the fully connected complete graph, the homogeneous mixing condition enables us to use mean-field theory to analyze the opinion evolution of the system. However, when the number of opinions increases, the number of variables describing the system grows exponentially. To mitigate this, we focus on a special scenario where the largest group of committed agents competes with a motley of committed groups, each of which is smaller than the largest one, while initially, most of uncommitted agents hold one unique opinion. This scenario is chosen for its recurrence in diverse societies and its potential for complexity reduction by unifying agents from smaller committed groups into one category. Our investigation reveals that when the size of the largest committed group reaches the critical threshold, most of uncommitted agents change their beliefs to this opinion, triggering a phase transition. Further, we derive the general formula for the multi-opinion evolution using a recursive approach, enabling investigation into any scenario. Finally, we employ agent-based simulations to reveal the opinion evolution and dominance transition in random graphs. Our results provide insights into the conditions under which the dominant opinion emerges in a population and the factors that influence these conditions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.