Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A generic self-supervised learning (SSL) framework for representation learning from spectra-spatial feature of unlabeled remote sensing imagery (2306.15836v1)

Published 27 Jun 2023 in cs.CV

Abstract: Remote sensing data has been widely used for various Earth Observation (EO) missions such as land use and cover classification, weather forecasting, agricultural management, and environmental monitoring. Most existing remote sensing data-based models are based on supervised learning that requires large and representative human-labelled data for model training, which is costly and time-consuming. Recently, self-supervised learning (SSL) enables the models to learn a representation from orders of magnitude more unlabelled data. This representation has been proven to boost the performance of downstream tasks and has potential for remote sensing applications. The success of SSL is heavily dependent on a pre-designed pretext task, which introduces an inductive bias into the model from a large amount of unlabelled data. Since remote sensing imagery has rich spectral information beyond the standard RGB colour space, the pretext tasks established in computer vision based on RGB images may not be straightforward to be extended to the multi/hyperspectral domain. To address this challenge, this work has designed a novel SSL framework that is capable of learning representation from both spectra-spatial information of unlabelled data. The framework contains two novel pretext tasks for object-based and pixel-based remote sensing data analysis methods, respectively. Through two typical downstream tasks evaluation (a multi-label land cover classification task on Sentienl-2 multispectral datasets and a ground soil parameter retrieval task on hyperspectral datasets), the results demonstrate that the representation obtained through the proposed SSL achieved a significant improvement in model performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. Y. Ban, P. Gong, and C. Giri, “Global land cover mapping using earth observation satellite data: Recent progresses and challenges,” pp. 1–6, 2015.
  2. D. Li, P. Zhang, T. Chen, and W. Qin, “Recent Development and Challenges in Spectroscopy and Machine Vision Technologies for Crop Nitrogen Diagnosis: A Review,” Remote Sensing, vol. 12, no. 16, p. 2578, Jan. 2020, number: 16 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-4292/12/16/2578
  3. L. P. Osco, J. Marcato Junior, A. P. Marques Ramos, L. A. de Castro Jorge, S. N. Fatholahi, J. de Andrade Silva, E. T. Matsubara, H. Pistori, W. N. Gonçalves, and J. Li, “A review on deep learning in UAV remote sensing,” International Journal of Applied Earth Observation and Geoinformation, vol. 102, p. 102456, Oct. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S030324342100163X
  4. P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, “Advanced Spectral Classifiers for Hyperspectral Images: A review,” IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 1, pp. 8–32, Mar. 2017.
  5. G. Chen, Q. Weng, G. J. Hay, and Y. He, “Geographic object-based image analysis (GEOBIA): Emerging trends and future opportunities,” GIScience & Remote Sensing, vol. 55, no. 2, pp. 159–182, 2018, publisher: Taylor & Francis.
  6. M. Pal and P. M. Mather, “An assessment of the effectiveness of decision tree methods for land cover classification,” Remote Sensing of Environment, vol. 86, no. 4, pp. 554–565, Aug. 2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0034425703001329
  7. C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, Sep. 1995. [Online]. Available: http://link.springer.com/10.1007/BF00994018
  8. L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324
  9. M. Pal, “Random forest classifier for remote sensing classification,” International Journal of Remote Sensing, vol. 26, no. 1, pp. 217–222, 2005.
  10. A. Safari, H. Sohrabi, S. Powell, and S. Shataee, “A comparative assessment of multi-temporal Landsat 8 and machine learning algorithms for estimating aboveground carbon stock in coppice oak forests,” International Journal of Remote Sensing, vol. 38, no. 22, pp. 6407–6432, 2017, publisher: Taylor & Francis.
  11. C. Singh, S. K. Karan, P. Sardar, and S. R. Samadder, “Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis,” Journal of Environmental Management, vol. 308, p. 114639, 2022, publisher: Elsevier.
  12. A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-Rodriguez, “A Review on Deep Learning Techniques Applied to Semantic Segmentation,” arXiv:1704.06857 [cs], Apr. 2017, arXiv: 1704.06857. [Online]. Available: http://arxiv.org/abs/1704.06857
  13. X. Zhang, L. Han, L. Han, and L. Zhu, “How Well Do Deep Learning-Based Methods for Land Cover Classification and Object Detection Perform on High Resolution Remote Sensing Imagery?” Remote Sensing, vol. 12, no. 3, p. 417, Jan. 2020, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-4292/12/3/417
  14. J. E. Ball, D. T. Anderson, and C. S. Chan, “A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community,” Journal of Applied Remote Sensing, vol. 11, no. 04, p. 1, Sep. 2017, arXiv: 1709.00308. [Online]. Available: http://arxiv.org/abs/1709.00308
  15. A. Romero, C. Gatta, and G. Camps-Valls, “Unsupervised Deep Feature Extraction for Remote Sensing Image Classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 3, pp. 1349–1362, Mar. 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7293195/
  16. T. Hatano, T. Tsuneda, Y. Suzuki, K. Shintani, and S. Yamane, “Image Classification with Additional Non-decision Labels using Self-supervised learning and GAN,” in 2020 Eighth International Symposium on Computing and Networking Workshops (CANDARW).   IEEE, 2020, pp. 125–129.
  17. Y. Li, J. Chen, and Y. Zheng, “A multi-task self-supervised learning framework for scopy images,” in 2020 IEEE 17th international symposium on biomedical imaging (ISBI).   IEEE, 2020, pp. 2005–2009.
  18. Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite bert for self-supervised learning of language representations,” arXiv preprint arXiv:1909.11942, 2019.
  19. C. Leiter, R. Zhang, Y. Chen, J. Belouadi, D. Larionov, V. Fresen, and S. Eger, “ChatGPT: A Meta-Analysis after 2.5 Months,” Feb. 2023. [Online]. Available: https://arxiv.org/abs/2302.13795v1
  20. I. Misra and L. v. d. Maaten, “Self-supervised learning of pretext-invariant representations,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 6707–6717.
  21. C. Mitash, K. E. Bekris, and A. Boularias, “A self-supervised learning system for object detection using physics simulation and multi-view pose estimation,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 545–551.
  22. N. Alosaimi, H. Alhichri, Y. Bazi, B. Ben Youssef, and N. Alajlan, “Self-supervised learning for remote sensing scene classification under the few shot scenario,” Scientific Reports, vol. 13, no. 1, p. 433, Jan. 2023, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41598-022-27313-5
  23. C. Tao, J. Qi, W. Lu, H. Wang, and H. Li, “Remote Sensing Image Scene Classification With Self-Supervised Paradigm Under Limited Labeled Samples,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022, conference Name: IEEE Geoscience and Remote Sensing Letters.
  24. Z. Zhao, Z. Luo, J. Li, C. Chen, and Y. Piao, “When Self-Supervised Learning Meets Scene Classification: Remote Sensing Scene Classification Based on a Multitask Learning Framework,” Remote Sensing, vol. 12, no. 20, p. 3276, Jan. 2020, number: 20 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-4292/12/20/3276
  25. H. Dong, W. Ma, Y. Wu, J. Zhang, and L. Jiao, “Self-Supervised Representation Learning for Remote Sensing Image Change Detection Based on Temporal Prediction,” Remote Sensing, vol. 12, no. 11, p. 1868, Jan. 2020, number: 11 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-4292/12/11/1868
  26. X. Zhang, L. Han, T. Sobeih, L. Lappin, M. A. Lee, A. Howard, and A. Kisdi, “The Self-Supervised Spectral–Spatial Vision Transformer Network for Accurate Prediction of Wheat Nitrogen Status from UAV Imagery,” Remote Sensing, vol. 14, no. 6, p. 1400, 2022, publisher: MDPI.
  27. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked Autoencoders Are Scalable Vision Learners,” arXiv:2111.06377 [cs], Dec. 2021, arXiv: 2111.06377. [Online]. Available: http://arxiv.org/abs/2111.06377
  28. N. Komodakis and S. Gidaris, “Unsupervised representation learning by predicting image rotations,” in International Conference on Learning Representations (ICLR), 2018.
  29. M. Imani and H. Ghassemian, “An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges,” Information Fusion, vol. 59, pp. 59–83, Jul. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1566253519307857
  30. M. Fauvel, J. Chanussot, J. A. Benediktsson, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles,” in 2007 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2007, pp. 4834–4837.
  31. W. Lee, B. Park, and K. Han, “Svm-based classification of diffusion tensor imaging data for diagnosing alzheimer’s disease and mild cognitive impairment,” in International Conference on Intelligent Computing.   Springer, 2015, pp. 489–499.
  32. M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of applications and future directions,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 114, pp. 24–31, Apr. 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0924271616000265
  33. L. Chasmer, C. Hopkinson, T. Veness, W. Quinton, and J. Baltzer, “A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost,” Remote Sensing of Environment, vol. 143, no. 10, pp. 73–84, 2014.
  34. M. A. Friedl and C. E. Brodley, “Decision tree classification of land cover from remotely sensed data,” Remote Sensing of Environment, vol. 61, no. 3, pp. 399–409, 1997.
  35. J. E. Ball, D. T. Anderson, and C. S. Chan, “Special Section Guest Editorial: Feature and Deep Learning in Remote Sensing Applications,” Journal of Applied Remote Sensing, vol. 11, no. 04, p. 1, Jan. 2018. [Online]. Available: https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-11/issue-04/042601/Special-Section-Guest-Editorial–Feature-and-Deep-Learning-in/10.1117/1.JRS.11.042601.full
  36. C. F. Brown, S. P. Brumby, B. Guzder-Williams, T. Birch, S. B. Hyde, J. Mazzariello, W. Czerwinski, V. J. Pasquarella, R. Haertel, S. Ilyushchenko, K. Schwehr, M. Weisse, F. Stolle, C. Hanson, O. Guinan, R. Moore, and A. M. Tait, “Dynamic World, Near real-time global 10 m land use land cover mapping,” Scientific Data, vol. 9, no. 1, p. 251, Jun. 2022, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41597-022-01307-4
  37. Y. Wang, C. M. Albrecht, N. A. A. Braham, L. Mou, and X. X. Zhu, “Self-Supervised Learning in Remote Sensing: A review,” IEEE Geoscience and Remote Sensing Magazine, vol. 10, no. 4, pp. 213–247, Dec. 2022, conference Name: IEEE Geoscience and Remote Sensing Magazine.
  38. L. Bruzzone and D. F. Prieto, “Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 2, pp. 456–460, 2001.
  39. R. G. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data,” Remote sensing of environment, vol. 37, no. 1, pp. 35–46, 1991.
  40. G. H. Ball and J. Hall, “ISODATA: A novel method for data analysis and pattern classification,” 1965.
  41. T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu, “An efficient k-means clustering algorithm: analysis and implementation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881–892, Jul. 2002. [Online]. Available: http://ieeexplore.ieee.org/document/1017616/
  42. X. Zhang, M. Zhang, Y. Zheng, and B. Wu, “Crop Mapping Using PROBA-V Time Series Data at the Yucheng and Hongxing Farm in China,” Remote Sensing, vol. 8, no. 11, p. 915, 2016. [Online]. Available: http://www.mdpi.com/2072-4292/8/11/915 DE ID - 337
  43. H. Zhang, H. Zhai, L. Zhang, and P. Li, “Spectral–spatial sparse subspace clustering for hyperspectral remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 6, pp. 3672–3684, 2016, publisher: IEEE.
  44. C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by context prediction,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1422–1430.
  45. M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw puzzles,” in European conference on computer vision.   Springer, 2016, pp. 69–84.
  46. D. Alexey, P. Fischer, J. Tobias, M. R. Springenberg, and T. Brox, “Discriminative, unsupervised feature learning with exemplar convolutional, neural networks,” IEEE TPAMI, vol. 38, no. 9, pp. 1734–1747, 2016.
  47. S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and N. Saunshi, “A Theoretical Analysis of Contrastive Unsupervised Representation Learning,” arXiv:1902.09229 [cs, stat], Feb. 2019, arXiv: 1902.09229. [Online]. Available: http://arxiv.org/abs/1902.09229
  48. M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging Properties in Self-Supervised Vision Transformers,” arXiv:2104.14294 [cs], May 2021, arXiv: 2104.14294. [Online]. Available: http://arxiv.org/abs/2104.14294
  49. J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent: A new approach to self-supervised Learning,” arXiv:2006.07733 [cs, stat], Sep. 2020, arXiv: 2006.07733. [Online]. Available: http://arxiv.org/abs/2006.07733
  50. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou, “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.” Journal of machine learning research, vol. 11, no. 12, 2010.
  51. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.   Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
  52. M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv:1701.07875 [cs, stat], Dec. 2017, arXiv: 1701.07875. [Online]. Available: http://arxiv.org/abs/1701.07875
  53. X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum contrastive learning,” arXiv preprint arXiv:2003.04297, 2020.
  54. X. Chen, S. Xie, and K. He, “An Empirical Study of Training Self-Supervised Vision Transformers,” arXiv:2104.02057 [cs], Aug. 2021, arXiv: 2104.02057. [Online]. Available: http://arxiv.org/abs/2104.02057
  55. K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.
  56. X. Chen and K. He, “Exploring Simple Siamese Representation Learning,” Nov. 2020, arXiv:2011.10566 [cs]. [Online]. Available: http://arxiv.org/abs/2011.10566
  57. Z. Wen, Z. Liu, S. Zhang, and Q. Pan, “Rotation awareness based self-supervised learning for SAR target recognition with limited training samples,” IEEE Transactions on Image Processing, vol. 30, pp. 7266–7279, 2021, publisher: IEEE.
  58. S. Singh, A. Batra, G. Pang, L. Torresani, S. Basu, M. Paluri, and C. V. Jawahar, “Self-Supervised Feature Learning for Semantic Segmentation of Overhead Imagery.” in BMVC, vol. 1, 2018, p. 4, issue: 2.
  59. W. Geng, W. Zhou, and S. Jin, “Multi-view urban scene classification with a complementary-information learning model,” Photogrammetric Engineering & Remote Sensing, vol. 88, no. 1, pp. 65–72, 2022, publisher: American Society for Photogrammetry and Remote Sensing.
  60. W. Rao, Y. Qu, L. Gao, X. Sun, Y. Wu, and B. Zhang, “Transferable network with Siamese architecture for anomaly detection in hyperspectral images,” International Journal of Applied Earth Observation and Geoinformation, vol. 106, p. 102669, 2022, publisher: Elsevier.
  61. L. Zhang, W. Lu, J. Zhang, and H. Wang, “A Semisupervised Convolution Neural Network for Partial Unlabeled Remote-Sensing Image Segmentation,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022, publisher: IEEE.
  62. N. Jean, S. Wang, A. Samar, G. Azzari, D. Lobell, and S. Ermon, “Tile2Vec: Unsupervised representation learning for spatially distributed data,” May 2018, arXiv:1805.02855 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1805.02855
  63. S. Hou, H. Shi, X. Cao, X. Zhang, and L. Jiao, “Hyperspectral imagery classification based on contrastive learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2021, publisher: IEEE.
  64. P. Duan, Z. Xie, X. Kang, and S. Li, “Self-supervised learning-based oil spill detection of hyperspectral images,” Science China Technological Sciences, vol. 65, no. 4, pp. 793–801, 2022, publisher: Springer.
  65. M. Zhu, J. Fan, Q. Yang, and T. Chen, “SC-EADNet: A Self-Supervised Contrastive Efficient Asymmetric Dilated Network for Hyperspectral Image Classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2022, conference Name: IEEE Transactions on Geoscience and Remote Sensing.
  66. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” arXiv:2002.05709 [cs, stat], Jun. 2020, arXiv: 2002.05709. [Online]. Available: http://arxiv.org/abs/2002.05709
  67. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015, arXiv: 1512.03385. [Online]. Available: http://arxiv.org/abs/1512.03385
  68. A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2.   IEEE, 2005, pp. 60–65.
  69. J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv:1607.06450 [cs, stat], Jul. 2016, arXiv: 1607.06450. [Online]. Available: http://arxiv.org/abs/1607.06450
  70. Y. Dong, J.-B. Cordonnier, and A. Loukas, “Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth,” arXiv:2103.03404 [cs], Mar. 2021, arXiv: 2103.03404 version: 1. [Online]. Available: http://arxiv.org/abs/2103.03404
  71. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  72. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” arXiv:2010.11929 [cs], Oct. 2020, arXiv: 2010.11929. [Online]. Available: http://arxiv.org/abs/2010.11929
  73. G. Sumbul, A. De Wall, T. Kreuziger, F. Marcelino, H. Costa, P. Benevides, M. Caetano, B. Demir, and V. Markl, “BigEarthNet-MM: A Large-Scale, Multimodal, Multilabel Benchmark Archive for Remote Sensing Image Classification and Retrieval [Software and Data Sets],” IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 3, pp. 174–180, 2021, publisher: IEEE.
  74. G. Sumbul, J. Kang, T. Kreuziger, F. Marcelino, H. Costa, P. Benevides, M. Caetano, and B. Demir, “Bigearthnet deep learning models with a new class-nomenclature for remote sensing image understanding,” arXiv preprint arXiv:2001.06372, 2020.
  75. G. Sumbul and B. Demİr, “A Deep Multi-Attention Driven Approach for Multi-Label Remote Sensing Image Classification,” IEEE Access, vol. 8, pp. 95 934–95 946, 2020, conference Name: IEEE Access.
  76. I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,” Nov. 2017. [Online]. Available: https://arxiv.org/abs/1711.05101v3
  77. “AI4EO.” [Online]. Available: https://platform.ai4eo.eu/seeing-beyond-the-visible
  78. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “CatBoost: unbiased boosting with categorical features,” arXiv:1706.09516 [cs], Jan. 2019, arXiv: 1706.09516. [Online]. Available: http://arxiv.org/abs/1706.09516
  79. P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.
  80. R. Wightman, H. Touvron, and H. Jégou, “ResNet strikes back: An improved training procedure in timm,” arXiv:2110.00476 [cs], Oct. 2021, arXiv: 2110.00476. [Online]. Available: http://arxiv.org/abs/2110.00476
  81. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” May 2019, arXiv:1810.04805 [cs]. [Online]. Available: http://arxiv.org/abs/1810.04805
  82. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learners,” arXiv:2005.14165 [cs], Jul. 2020, arXiv: 2005.14165. [Online]. Available: http://arxiv.org/abs/2005.14165
  83. R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri, M. Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, V. Zhao, Y. Zhou, C.-C. Chang, I. Krivokon, W. Rusch, M. Pickett, P. Srinivasan, L. Man, K. Meier-Hellstern, M. R. Morris, T. Doshi, R. D. Santos, T. Duke, J. Soraker, B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson, K. Olson, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar, A. Butryna, M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil, B. Aguera-Arcas, C. Cui, M. Croak, E. Chi, and Q. Le, “LaMDA: Language Models for Dialog Applications,” Feb. 2022, arXiv:2201.08239 [cs]. [Online]. Available: http://arxiv.org/abs/2201.08239
  84. S. Diao, P. Wang, Y. Lin, and T. Zhang, “Active Prompting with Chain-of-Thought for Large Language Models,” Feb. 2023, arXiv:2302.12246 [cs]. [Online]. Available: http://arxiv.org/abs/2302.12246
  85. J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What Makes Good In-Context Examples for GPT-$3$?” Jan. 2021, arXiv:2101.06804 [cs]. [Online]. Available: http://arxiv.org/abs/2101.06804
  86. E. Saravia, “Prompt Engineering Guide,” Dec. 2022, publication Title: https://github.com/dair-ai/Prompt-Engineering-Guide original-date: 2022-12-16T16:04:50Z. [Online]. Available: https://github.com/dair-ai/Prompt-Engineering-Guide
Citations (2)

Summary

We haven't generated a summary for this paper yet.