Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Planar graphs are acyclically edge $(Δ+ 5)$-colorable (2306.15813v1)

Published 27 Jun 2023 in cs.DM, cs.DS, and math.CO

Abstract: An edge coloring of a graph $G$ is to color all the edges in the graph such that adjacent edges receive different colors. It is acyclic if each cycle in the graph receives at least three colors. Fiam{\v{c}}ik (1978) and Alon, Sudakov and Zaks (2001) conjectured that every simple graph with maximum degree $\Delta$ is acyclically edge $(\Delta + 2)$-colorable -- the well-known acyclic edge coloring conjecture (AECC). Despite many major breakthroughs and minor improvements, the conjecture remains open even for planar graphs. In this paper, we prove that planar graphs are acyclically edge $(\Delta + 5)$-colorable. Our proof has two main steps: Using discharging methods, we first show that every non-trivial planar graph must have one of the eight groups of well characterized local structures; and then acyclically edge color the graph using no more than $\Delta + 5$ colors by an induction on the number of edges.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)