Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Simple Steps to Success: A Method for Step-Based Counterfactual Explanations (2306.15557v3)

Published 27 Jun 2023 in cs.LG

Abstract: Algorithmic recourse is a process that leverages counterfactual explanations, going beyond understanding why a system produced a given classification, to providing a user with actions they can take to change their predicted outcome. Existing approaches to compute such interventions -- known as recourse -- identify a set of points that satisfy some desiderata -- e.g. an intervention in the underlying causal graph, minimizing a cost function, etc. Satisfying these criteria, however, requires extensive knowledge of the underlying model structure, an often unrealistic amount of information in several domains. We propose a data-driven and model-agnostic framework to compute counterfactual explanations. We introduce StEP, a computationally efficient method that offers incremental steps along the data manifold that directs users towards their desired outcome. We show that StEP uniquely satisfies a desirable set of axioms. Furthermore, via a thorough empirical and theoretical investigation, we show that StEP offers provable robustness and privacy guarantees while outperforming popular methods along important metrics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.