Papers
Topics
Authors
Recent
2000 character limit reached

KnowPrefix-Tuning: A Two-Stage Prefix-Tuning Framework for Knowledge-Grounded Dialogue Generation (2306.15430v1)

Published 27 Jun 2023 in cs.CL

Abstract: Existing knowledge-grounded conversation systems generate responses typically in a retrieve-then-generate manner. They require a large knowledge base and a strong knowledge retrieval component, which is time- and resource-consuming. In this paper, we address the challenge by leveraging the inherent knowledge encoded in the pre-trained LLMs (PLMs). We propose Knowledgeable Prefix Tuning (KnowPrefix-Tuning), a two-stage tuning framework, bypassing the retrieval process in a knowledge-grounded conversation system by injecting prior knowledge into the lightweight knowledge prefix. The knowledge prefix is a sequence of continuous knowledge-specific vectors that can be learned during training. In addition, we propose a novel interactive re-parameterization mechanism that allows the prefix to interact fully with the PLM during the optimization of response generation. Experimental results demonstrate that KnowPrefix-Tuning outperforms fine-tuning and other lightweight tuning approaches, and performs comparably with strong retrieval-based baselines while being $3\times$ faster during inference.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.