Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Differentially Private Data Release over Multiple Tables (2306.15201v1)

Published 27 Jun 2023 in cs.DB and cs.CR

Abstract: We study synthetic data release for answering multiple linear queries over a set of database tables in a differentially private way. Two special cases have been considered in the literature: how to release a synthetic dataset for answering multiple linear queries over a single table, and how to release the answer for a single counting (join size) query over a set of database tables. Compared to the single-table case, the join operator makes query answering challenging, since the sensitivity (i.e., by how much an individual data record can affect the answer) could be heavily amplified by complex join relationships. We present an algorithm for the general problem, and prove a lower bound illustrating that our general algorithm achieves parameterized optimality (up to logarithmic factors) on some simple queries (e.g., two-table join queries) in the most commonly-used privacy parameter regimes. For the case of hierarchical joins, we present a data partition procedure that exploits the concept of {\em uniformized sensitivities} to further improve the utility.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.