Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximate Counting for Spin Systems in Sub-Quadratic Time (2306.14867v3)

Published 26 Jun 2023 in cs.DS

Abstract: We present two randomised approximate counting algorithms with $\widetilde{O}(n{2-c}/\varepsilon2)$ running time for some constant $c>0$ and accuracy $\varepsilon$: (1) for the hard-core model with fugacity $\lambda$ on graphs with maximum degree $\Delta$ when $\lambda=O(\Delta{-1.5-c_1})$ where $c_1=c/(2-2c)$; (2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as $\mathbb{Z}2$. For the hard-core model, Weitz's algorithm (STOC, 2006) achieves sub-quadratic running time when correlation decays faster than the neighbourhood growth, namely when $\lambda = o(\Delta{-2})$. Our first algorithm does not require this property and extends the range where sub-quadratic algorithms exist. Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial growth, such as $\mathbb{Z}d$, but with a running time of the form $\widetilde{O}\left(n2\varepsilon{-2}/2{c(\log n){1/d}}\right)$ where $d$ is the exponent of the polynomial growth and $c>0$ is some constant.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube