Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An FPT Algorithm for Splitting a Necklace Among Two Thieves (2306.14508v1)

Published 26 Jun 2023 in math.CO, cs.CC, cs.CG, and cs.DS

Abstract: It is well-known that the 2-Thief-Necklace-Splitting problem reduces to the discrete Ham Sandwich problem. In fact, this reduction was crucial in the proof of the PPA-completeness of the Ham Sandwich problem [Filos-Ratsikas and Goldberg, STOC'19]. Recently, a variant of the Ham Sandwich problem called $\alpha$-Ham Sandwich has been studied, in which the point sets are guaranteed to be well-separated [Steiger and Zhao, DCG'10]. The complexity of this search problem remains unknown, but it is known to lie in the complexity class UEOPL [Chiu, Choudhary and Mulzer, ICALP'20]. We define the analogue of this well-separability condition in the necklace splitting problem -- a necklace is $n$-separable, if every subset $A$ of the $n$ types of jewels can be separated from the types $[n]\setminus A$ by at most $n$ separator points. By the reduction to the Ham Sandwich problem it follows that this version of necklace splitting has a unique solution. We furthermore provide two FPT algorithms: The first FPT algorithm solves 2-Thief-Necklace-Splitting on $(n-1+\ell)$-separable necklaces with $n$ types of jewels and $m$ total jewels in time $2{O(\ell\log\ell)}+m2$. In particular, this shows that 2-Thief-Necklace-Splitting is polynomial-time solvable on $n$-separable necklaces. Thus, attempts to show hardness of $\alpha$-Ham Sandwich through reduction from the 2-Thief-Necklace-Splitting problem cannot work. The second FPT algorithm tests $(n-1+\ell)$-separability of a given necklace with $n$ types of jewels in time $2{O(\ell2)}\cdot n4$. In particular, $n$-separability can thus be tested in polynomial time, even though testing well-separation of point sets is coNP-complete [Bergold et al., SWAT'22].

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.