Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AirIndex: Versatile Index Tuning Through Data and Storage (2306.14395v3)

Published 26 Jun 2023 in cs.DB

Abstract: The end-to-end lookup latency of a hierarchical index -- such as a B-tree or a learned index -- is determined by its structure such as the number of layers, the kinds of branching functions appearing in each layer, the amount of data we must fetch from layers, etc. Our primary observation is that by optimizing those structural parameters (or designs) specifically to a target system's I/O characteristics (e.g., latency, bandwidth), we can offer a faster lookup compared to the ones that are not optimized. Can we develop a systematic method for finding those optimal design parameters? Ideally, the method must have the potential to generate almost any existing index or a novel combination of them for the fastest possible lookup. In this work, we present new data and an I/O-aware index builder (called AirIndex) that can find high-speed hierarchical index designs in a principled way. Specifically, AirIndex minimizes an objective function expressing the end-to-end latency in terms of various designs -- the number of layers, types of layers, and more -- for given data and a storage profile, using a graph-based optimization method purpose-built to address the computational challenges rising from the inter-dependencies among index layers and the exponentially many candidate parameters in a large search space. Our empirical studies confirm that AirIndex can find optimal index designs, build optimal indexes within the times comparable to existing methods, and deliver up to 4.1x faster lookup than a lightweight B-tree library (LMDB), 3.3x--46.3x faster than state-of-the-art learned indexes (RMI/CDFShop, PGM-Index, ALEX/APEX, PLEX), and 2.0 faster than Data Calculator's suggestion on various dataset and storage settings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.