Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Low-Rank Prune-And-Factorize for Language Model Compression (2306.14152v1)

Published 25 Jun 2023 in cs.CL

Abstract: The components underpinning PLMs -- large weight matrices -- were shown to bear considerable redundancy. Matrix factorization, a well-established technique from matrix theory, has been utilized to reduce the number of parameters in PLM. However, it fails to retain satisfactory performance under moderate to high compression rate. In this paper, we identify the \textit{full-rankness} of fine-tuned PLM as the fundamental bottleneck for the failure of matrix factorization and explore the use of network pruning to extract low-rank sparsity pattern desirable to matrix factorization. We find such low-rank sparsity pattern exclusively exists in models generated by first-order pruning, which motivates us to unite the two approaches and achieve more effective model compression. We further propose two techniques: sparsity-aware SVD and mixed-rank fine-tuning, which improve the initialization and training of the compression procedure, respectively. Experiments on GLUE and question-answering tasks show that the proposed method has superior compression-performance trade-off compared to existing approaches.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube