Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Creating Realistic Anterior Segment Optical Coherence Tomography Images using Generative Adversarial Networks (2306.14058v1)

Published 24 Jun 2023 in eess.IV and cs.CV

Abstract: This paper presents the development and validation of a Generative Adversarial Network (GAN) purposed to create high-resolution, realistic Anterior Segment Optical Coherence Tomography (AS-OCT) images. We trained the Style and WAvelet based GAN (SWAGAN) on 142,628 AS-OCT B-scans. Three experienced refractive surgeons performed a blinded assessment to evaluate the realism of the generated images; their results were not significantly better than chance in distinguishing between real and synthetic images, thus demonstrating a high degree of image realism. To gauge their suitability for machine learning tasks, a convolutional neural network (CNN) classifier was trained with a dataset containing both real and GAN-generated images. The CNN demonstrated an accuracy rate of 78% trained on real images alone, but this accuracy rose to 100% when training included the generated images. This underscores the utility of synthetic images for machine learning applications. We further improved the resolution of the generated images by up-sampling them twice (2x) using an Enhanced Super Resolution GAN (ESRGAN), which outperformed traditional up-sampling techniques. In conclusion, GANs can effectively generate high-definition, realistic AS-OCT images, proving highly beneficial for machine learning and image analysis tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 16 likes.

Upgrade to Pro to view all of the tweets about this paper: