Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Taming the Exponential Action Set: Sublinear Regret and Fast Convergence to Nash Equilibrium in Online Congestion Games (2306.13673v1)

Published 19 Jun 2023 in cs.GT, cs.LG, and stat.ML

Abstract: The congestion game is a powerful model that encompasses a range of engineering systems such as traffic networks and resource allocation. It describes the behavior of a group of agents who share a common set of $F$ facilities and take actions as subsets with $k$ facilities. In this work, we study the online formulation of congestion games, where agents participate in the game repeatedly and observe feedback with randomness. We propose CongestEXP, a decentralized algorithm that applies the classic exponential weights method. By maintaining weights on the facility level, the regret bound of CongestEXP avoids the exponential dependence on the size of possible facility sets, i.e., $\binom{F}{k} \approx Fk$, and scales only linearly with $F$. Specifically, we show that CongestEXP attains a regret upper bound of $O(kF\sqrt{T})$ for every individual player, where $T$ is the time horizon. On the other hand, exploiting the exponential growth of weights enables CongestEXP to achieve a fast convergence rate. If a strict Nash equilibrium exists, we show that CongestEXP can converge to the strict Nash policy almost exponentially fast in $O(F\exp(-t{1-\alpha}))$, where $t$ is the number of iterations and $\alpha \in (1/2, 1)$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.