Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Construction of polynomial particular solutions of linear constant-coefficient partial differential equations (2306.13628v2)

Published 23 Jun 2023 in math.NA, cs.NA, and math.AP

Abstract: This paper introduces general methodologies for constructing closed-form solutions to linear constant-coefficient partial differential equations (PDEs) with polynomial right-hand sides in two and three spatial dimensions. Polynomial solutions have recently regained significance in the development of numerical techniques for evaluating volume integral operators and also have potential applications in certain kinds of Trefftz finite element methods. The equations covered in this work include the isotropic and anisotropic Poisson, Helmholtz, Stokes, linearized Navier-Stokes, stationary advection-diffusion, elastostatic equations, as well as the time-harmonic elastodynamic and Maxwell equations. Several solutions to complex PDE systems are obtained by a potential representation and rely on the Helmholtz or Poisson solvers. Some of the cases addressed, namely Stokes flow, Maxwell's equations and linearized Navier-Stokes equations, naturally incorporate divergence constraints on the solution. This article provides a generic pattern whereby solutions are constructed by leveraging solutions of the lowest-order part of the partial differential operator (PDO). With the exception of anisotropic material tensors, no matrix inversion or linear system solution is required to compute the solutions. This work is accompanied by a freely-available Julia library, \texttt{ElementaryPDESolutions.jl}, which implements the proposed methodology in an efficient and user-friendly format.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.