Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

OptMSM: Optimizing Multi-Scenario Modeling for Click-Through Rate Prediction (2306.13382v1)

Published 23 Jun 2023 in cs.IR

Abstract: A large-scale industrial recommendation platform typically consists of multiple associated scenarios, requiring a unified click-through rate (CTR) prediction model to serve them simultaneously. Existing approaches for multi-scenario CTR prediction generally consist of two main modules: i) a scenario-aware learning module that learns a set of multi-functional representations with scenario-shared and scenario-specific information from input features, and ii) a scenario-specific prediction module that serves each scenario based on these representations. However, most of these approaches primarily focus on improving the former module and neglect the latter module. This can result in challenges such as increased model parameter size, training difficulty, and performance bottlenecks for each scenario. To address these issues, we propose a novel framework called OptMSM (\textbf{Opt}imizing \textbf{M}ulti-\textbf{S}cenario \textbf{M}odeling). First, we introduce a simplified yet effective scenario-enhanced learning module to alleviate the aforementioned challenges. Specifically, we partition the input features into scenario-specific and scenario-shared features, which are mapped to specific information embedding encodings and a set of shared information embeddings, respectively. By imposing an orthogonality constraint on the shared information embeddings to facilitate the disentanglement of shared information corresponding to each scenario, we combine them with the specific information embeddings to obtain multi-functional representations. Second, we introduce a scenario-specific hypernetwork in the scenario-specific prediction module to capture interactions within each scenario more effectively, thereby alleviating the performance bottlenecks. Finally, we conduct extensive offline experiments and an online A/B test to demonstrate the effectiveness of OptMSM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.