Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Deformable Ultrasound Image Registration and Its Application for Vessel Segmentation (2306.13329v1)

Published 23 Jun 2023 in eess.IV, cs.CV, and cs.RO

Abstract: This paper presents a deep-learning model for deformable registration of ultrasound images at online rates, which we call U-RAFT. As its name suggests, U-RAFT is based on RAFT, a convolutional neural network for estimating optical flow. U-RAFT, however, can be trained in an unsupervised manner and can generate synthetic images for training vessel segmentation models. We propose and compare the registration quality of different loss functions for training U-RAFT. We also show how our approach, together with a robot performing force-controlled scans, can be used to generate synthetic deformed images to significantly expand the size of a femoral vessel segmentation training dataset without the need for additional manual labeling. We validate our approach on both a silicone human tissue phantom as well as on in-vivo porcine images. We show that U-RAFT generates synthetic ultrasound images with 98% and 81% structural similarity index measure (SSIM) to the real ultrasound images for the phantom and porcine datasets, respectively. We also demonstrate that synthetic deformed images from U-RAFT can be used as a data augmentation technique for vessel segmentation models to improve intersection-over-union (IoU) segmentation performance

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. S. Ivar Seldinger, “Catheter replacement of the needle in percutaneous arteriography: a new technique,” Acta radiologica, vol. 49, no. sup434, pp. 47–52, 2008.
  2. L. Brattain, T. Pierce, L. Gjesteby, M. Johnson, N. DeLosa, J. Werblin, J. Gupta, A. Ozturk, X. Wang, Q. Li, B. Telfer, and A. Samir, “AI-enabled, ultrasound-guided handheld robotic device for femoral vascular access,” Biosensors, vol. 11, no. 12, p. 522, Dec. 2021.
  3. N. Zevallos, E. Harber, K. Patel, Y. Gu, K. Sladick, F. Guyette, L. Weiss, M. R. Pinsky, H. Gomez, J. Galeotti, et al., “Toward robotically automated femoral vascular access,” in 2021 International Symposium on Medical Robotics (ISMR).   IEEE, 2021, pp. 1–7.
  4. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  5. N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-Net and its variants for medical image segmentation: a review of theory and applications,” IEEE Access, vol. 9, pp. 82 031–82 057, 2021.
  6. E. Chen, H. Choset, and J. Galeotti, “Uncertainty-based adaptive data augmentation for ultrasound imaging anatomical variations,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI).   IEEE, 2021, pp. 438–442.
  7. N. Marahrens, B. Scaglioni, D. Jones, R. Prasad, C. S. Biyani, and P. Valdastri, “Towards autonomous robotic minimally invasive ultrasound scanning and vessel reconstruction on non-planar surfaces,” Frontiers in Robotics and AI, p. 178, 2022.
  8. C. Morales, J. Yao, T. Rane, R. Edman, H. Choset, and A. Dubrawski, “Reslicing ultrasound images for data augmentation and vessel reconstruction,” in 2023 International Conference on Robotics and Automation (ICRA).   IEEE, 2023 (Accepted).
  9. E. Krivov, M. Pisov, and M. Belyaev, “MRI augmentation via elastic registration for brain lesions segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Third International Workshop, BrainLes 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Revised Selected Papers 3.   Springer, 2018, pp. 369–380.
  10. J. Nalepa, G. Mrukwa, S. Piechaczek, P. R. Lorenzo, M. Marcinkiewicz, B. Bobek-Billewicz, P. Wawrzyniak, P. Ulrych, J. Szymanek, M. Cwiek, W. Dudzik, M. Kawulok, and M. P. Hayball, “Data augmentation via image registration,” in 2019 IEEE International Conference on Image Processing (ICIP), Sept. 2019, pp. 4250–4254.
  11. N. J. Tustison, B. B. Avants, Z. Lin, X. Feng, N. Cullen, J. F. Mata, L. Flors, J. C. Gee, T. A. Altes, J. P. Mugler, and K. Qing, “Convolutional neural networks with template-based data augmentation for functional lung image quantification,” Academic radiology, vol. 26, no. 3, pp. 412–423, Mar. 2019.
  12. C. Che, T. S. Mathai, and J. Galeotti, “Ultrasound registration: A review,” Methods, vol. 115, pp. 128–143, 2017.
  13. M. Wang and L. Pengcheng, “A review of deformation models in medical image registration,” Journal of Medical and Biological Engineering, vol. 39, Apr. 2018.
  14. A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registration: a survey,” IEEE Transactions on Medical Imaging, vol. 32, no. 7, pp. 1153–1190, July 2013, conference Name: IEEE Transactions on Medical Imaging.
  15. H. R. Boveiri, R. Khayami, R. Javidan, and A. Mehdizadeh, “Medical image registration using deep neural networks: a comprehensive review,” Computers & Electrical Engineering, vol. 87, p. 106767, Oct. 2020.
  16. Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang, “Deep learning in medical image registration: a review,” Physics in Medicine & Biology, vol. 65, no. 20, p. 20TR01, Oct. 2020.
  17. J. Zou, B. Gao, Y. Song, and J. Qin, “A review of deep learning-based deformable medical image registration,” Frontiers in Oncology, vol. 12, p. 1047215, Dec. 2022.
  18. Z. Teed and J. Deng, “RAFT: Recurrent all-pairs field transforms for optical flow,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16.   Springer, 2020, pp. 402–419.
  19. M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu, “Spatial transformer networks,” in Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28.   Curran Associates, Inc., 2015.
  20. A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical flow with convolutional networks,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015.
  21. E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “FlowNet 2.0: Evolution of optical flow estimation with deep networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
  22. D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
  23. N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, “A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  24. M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
  25. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, pp. 91–110, 2004.
  26. R. Goel, F. Abhimanyu, K. Patel, J. Galeotti, and H. Choset, “Autonomous ultrasound scanning using bayesian optimization and hybrid force control,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8396–8402.
  27. L. Bottou, “Stochastic gradient descent tricks,” Neural Networks: Tricks of the Trade: Second Edition, pp. 421–436, 2012.
  28. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” NIPS 2017 Autodiff Workshop, 2017.
  29. U. Sara, M. Akter, and M. S. Uddin, “Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study,” Journal of Computer and Communications, vol. 7, no. 3, pp. 8–18, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. FNU Abhimanyu (3 papers)
  2. Andrew L. Orekhov (8 papers)
  3. Ananya Bal (2 papers)
  4. John Galeotti (14 papers)
  5. Howie Choset (92 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.