Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Abstractive Text Summarization for Resumes With Cutting Edge NLP Transformers and LSTM (2306.13315v1)

Published 23 Jun 2023 in cs.CL and cs.AI

Abstract: Text summarization is a fundamental task in natural language processing that aims to condense large amounts of textual information into concise and coherent summaries. With the exponential growth of content and the need to extract key information efficiently, text summarization has gained significant attention in recent years. In this study, LSTM and pre-trained T5, Pegasus, BART and BART-Large model performances were evaluated on the open source dataset (Xsum, CNN/Daily Mail, Amazon Fine Food Review and News Summary) and the prepared resume dataset. This resume dataset consists of many information such as language, education, experience, personal information, skills, and this data includes 75 resumes. The primary objective of this research was to classify resume text. Various techniques such as LSTM, pre-trained models, and fine-tuned models were assessed using a dataset of resumes. The BART-Large model fine-tuned with the resume dataset gave the best performance.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.