Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NoisyILRMA: Diffuse-Noise-Aware Independent Low-Rank Matrix Analysis for Fast Blind Source Extraction (2306.12820v1)

Published 22 Jun 2023 in cs.SD and eess.AS

Abstract: In this paper, we address the multichannel blind source extraction (BSE) of a single source in diffuse noise environments. To solve this problem even faster than by fast multichannel nonnegative matrix factorization (FastMNMF) and its variant, we propose a BSE method called NoisyILRMA, which is a modification of independent low-rank matrix analysis (ILRMA) to account for diffuse noise. NoisyILRMA can achieve considerably fast BSE by incorporating an algorithm developed for independent vector extraction. In addition, to improve the BSE performance of NoisyILRMA, we propose a mechanism to switch the source model with ILRMA-like nonnegative matrix factorization to a more expressive source model during optimization. In the experiment, we show that NoisyILRMA runs faster than a FastMNMF algorithm while maintaining the BSE performance. We also confirm that the switching mechanism improves the BSE performance of NoisyILRMA.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.