Papers
Topics
Authors
Recent
2000 character limit reached

MFCCGAN: A Novel MFCC-Based Speech Synthesizer Using Adversarial Learning

Published 22 Jun 2023 in cs.SD, cs.AI, and eess.AS | (2306.12785v1)

Abstract: In this paper, we introduce MFCCGAN as a novel speech synthesizer based on adversarial learning that adopts MFCCs as input and generates raw speech waveforms. Benefiting the GAN model capabilities, it produces speech with higher intelligibility than a rule-based MFCC-based speech synthesizer WORLD. We evaluated the model based on a popular intrusive objective speech intelligibility measure (STOI) and quality (NISQA score). Experimental results show that our proposed system outperforms Librosa MFCC- inversion (by an increase of about 26% up to 53% in STOI and 16% up to 78% in NISQA score) and a rise of about 10% in intelligibility and about 4% in naturalness in comparison with conventional rule-based vocoder WORLD that used in the CycleGAN-VC family. However, WORLD needs additional data like F0. Finally, using perceptual loss in discriminators based on STOI could improve the quality more. WebMUSHRA-based subjective tests also show the quality of the proposed approach.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.