Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

On the Robustness of Generative Retrieval Models: An Out-of-Distribution Perspective (2306.12756v1)

Published 22 Jun 2023 in cs.IR, cs.AI, cs.CL, and cs.LG

Abstract: Recently, we have witnessed generative retrieval increasingly gaining attention in the information retrieval (IR) field, which retrieves documents by directly generating their identifiers. So far, much effort has been devoted to developing effective generative retrieval models. There has been less attention paid to the robustness perspective. When a new retrieval paradigm enters into the real-world application, it is also critical to measure the out-of-distribution (OOD) generalization, i.e., how would generative retrieval models generalize to new distributions. To answer this question, firstly, we define OOD robustness from three perspectives in retrieval problems: 1) The query variations; 2) The unforeseen query types; and 3) The unforeseen tasks. Based on this taxonomy, we conduct empirical studies to analyze the OOD robustness of several representative generative retrieval models against dense retrieval models. The empirical results indicate that the OOD robustness of generative retrieval models requires enhancement. We hope studying the OOD robustness of generative retrieval models would be advantageous to the IR community.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube