Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Polynomial Logical Zonotope: A Set Representation for Reachability Analysis of Logical Systems (2306.12508v3)

Published 21 Jun 2023 in cs.LO, cs.CC, cs.DS, cs.SY, and eess.SY

Abstract: In this paper, we introduce a set representation called polynomial logical zonotopes for performing exact and computationally efficient reachability analysis on logical systems. We prove that through this polynomial-like construction, we are able to perform all of the fundamental logical operations (XOR, NOT, XNOR, AND, NAND, OR, NOR) between sets of points exactly in a reduced space, i.e., generator space with reduced complexity. Polynomial logical zonotopes are a generalization of logical zonotopes, which are able to represent up to $2n$ binary vectors using only $n$ generators. Due to their construction, logical zonotopes are only able to support exact computations of some logical operations (XOR, NOT, XNOR), while other operations (AND, NAND, OR, NOR) result in over-approximations in the generator space. In order to perform all fundamental logical operations exactly, we formulate a generalization of logical zonotopes that is constructed by dependent generators and exponent matrices. While we are able to perform all of the logical operations exactly, this comes with a slight increase in computational complexity compared to logical zonotopes. To illustrate and showcase the computational benefits of polynomial logical zonotopes, we present the results of performing reachability analysis on two use cases: (1) safety verification of an intersection crossing protocol and (2) reachability analysis on a high-dimensional Boolean function. Moreover, to highlight the extensibility of logical zonotopes, we include an additional use case where we perform a computationally tractable exhaustive search for the key of a linear feedback shift register.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube