Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

NeuroCLIP: Neuromorphic Data Understanding by CLIP and SNN (2306.12073v2)

Published 21 Jun 2023 in cs.CV

Abstract: Recently, the neuromorphic vision sensor has received more and more interest. However, the neuromorphic data consists of asynchronous event spikes, which makes it difficult to construct a big benchmark to train a power general neural network model, thus limiting the neuromorphic data understanding for unseen" objects by deep learning. While for the frame image, since the training data can be obtained easily, the zero-shot and few-shot learning forunseen" task via the large Contrastive Vision-Language Pre-training (CLIP) model, which is pre-trained by large-scale image-text pairs in 2D, have shown inspirational performance. We wonder whether the CLIP could be transferred to neuromorphic data recognition to handle the ``unseen" problem. To this end, we materialize this idea with NeuroCLIP in the paper. The NeuroCLIP consists of 2D CLIP and two specially designed modules for neuromorphic data understanding. First, an event-frame module that could convert the event spikes to the sequential frame image with a simple discrimination strategy. Second, an inter-timestep adapter, which is a simple fine-tuned adapter based on a spiking neural network (SNN) for the sequential features coming from the visual encoder of CLIP to improve the few-shot performance. Various experiments on neuromorphic datasets including N-MNIST, CIFAR10-DVS, and ES-ImageNet demonstrate the effectiveness of NeuroCLIP. Our code is open-sourced at https://github.com/yfguo91/NeuroCLIP.git.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub