Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deterministic Identification Over Multiple-Access Channels (2306.11705v1)

Published 20 Jun 2023 in cs.IT and math.IT

Abstract: Deterministic identification over K-input multiple-access channels with average input cost constraints is considered. The capacity region for deterministic identification is determined for an average-error criterion, where arbitrarily large codes are achievable. For a maximal-error criterion, upper and lower bounds on the capacity region are derived. The bounds coincide if all average partial point-to-point channels are injective under the input constraint, i.e. all inputs at one terminal are mapped to distinct output distributions, if averaged over the inputs at all other terminals. The achievability is proved by treating the MAC as an arbitrarily varying channel with average state constraints. For injective average channels, the capacity region is a hyperrectangle. The modulo-2 and modulo-3 binary adder MAC are presented as examples of channels which are injective under suitable input constraints. The binary multiplier MAC is presented as an example of a non-injective channel, where the achievable identification rate region still includes the Shannon capacity region.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.