Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudorandom unitaries are neither real nor sparse nor noise-robust (2306.11677v3)

Published 20 Jun 2023 in quant-ph, cs.CC, and cs.CR

Abstract: Pseudorandom quantum states (PRSs) and pseudorandom unitaries (PRUs) possess the dual nature of being efficiently constructible while appearing completely random to any efficient quantum algorithm. In this study, we establish fundamental bounds on pseudorandomness. We show that PRSs and PRUs exist only when the probability that an error occurs is negligible, ruling out their generation on noisy intermediate-scale and early fault-tolerant quantum computers. Further, we show that PRUs need imaginarity while PRS do not have this restriction. This implies that quantum randomness requires in general a complex-valued formalism of quantum mechanics, while for random quantum states real numbers suffice. Additionally, we derive lower bounds on the coherence of PRSs and PRUs, ruling out the existence of sparse PRUs and PRSs. We also show that the notions of PRS, PRUs and pseudorandom scramblers (PRSSs) are distinct in terms of resource requirements. We introduce the concept of pseudoresources, where states which contain a low amount of a given resource masquerade as high-resource states. We define pseudocoherence, pseudopurity and pseudoimaginarity, and identify three distinct types of pseudoresources in terms of their masquerading capabilities. Our work also establishes rigorous bounds on the efficiency of property testing, demonstrating the exponential complexity in distinguishing real quantum states from imaginary ones, in contrast to the efficient measurability of unitary imaginarity. Lastly, we show that the transformation from a complex to a real model of quantum computation is inefficient, in contrast to the reverse process, which is efficient. Our results establish fundamental limits on property testing and provide valuable insights into quantum pseudorandomness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. Z. Ji, Y.-K. Liu, and F. Song, Pseudorandom quantum states, in Annual International Cryptology Conference (Springer, 2018) pp. 126–152.
  2. F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Efficient quantum pseudorandomness, Phys. Rev. Lett. 116, 170502 (2016).
  3. F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, Communications in Mathematical Physics 346, 397 (2016).
  4. V. Scarani, Guaranteed randomness, Nature 464, 988 (2010).
  5. M. Herrero-Collantes and J. C. Garcia-Escartin, Quantum random number generators, Reviews of Modern Physics 89, 015004 (2017).
  6. A. Acín and L. Masanes, Certified randomness in quantum physics, Nature 540, 213 (2016).
  7. C. S. Calude and K. Svozil, Quantum randomness and value indefiniteness, Advanced Science Letters 1, 165 (2008).
  8. P. Ananth, Y.-T. Lin, and H. Yuen, Pseudorandom strings from pseudorandom quantum states, arXiv preprint arXiv:2306.05613  (2023).
  9. Z. Brakerski and O. Shmueli, (Pseudo) random quantum states with binary phase, in Theory of Cryptography Conference (Springer, 2019) pp. 229–250.
  10. T. V. Kondra, C. Datta, and A. Streltsov, Real quantum operations and state transformations, New Journal of Physics 25, 093043 (2023).
  11. T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
  12. A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quantum coherence as a resource, Rev. Mod. Phys. 89, 041003 (2017).
  13. P. Zanardi, G. Styliaris, and L. Campos Venuti, Coherence-generating power of quantum unitary maps and beyond, Phys. Rev. A 95, 052306 (2017).
  14. K. Bu and C. Xiong, A note on cohering power and de-cohering power, Quantum Information & Computation 17, 1206 (2017).
  15. E. Chitambar and M.-H. Hsieh, Relating the resource theories of entanglement and quantum coherence, Phys. Rev. Lett. 117, 020402 (2016).
  16. M. Hillery, Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation, Phys. Rev. A 93, 012111 (2016).
  17. R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to program testing, SIAM Journal on Computing 25, 252 (1996).
  18. O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning and approximation, Journal of the ACM (JACM) 45, 653 (1998).
  19. A. Montanaro and R. de Wolf, A Survey of Quantum Property Testing, Graduate Surveys No. 7 (Theory of Computing Library, 2016) pp. 1–81.
  20. A. W. Harrow and A. Montanaro, Testing product states, quantum Merlin-Arthur games and tensor optimization, Journal of the ACM (JACM) 60, 1 (2013).
  21. T. Chen, S. Nadimpalli, and H. Yuen, Testing and learning quantum juntas nearly optimally, in Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (SIAM, 2023) pp. 1163–1185.
  22. A. She and H. Yuen, Unitary property testing lower bounds by polynomials, arXiv preprint arXiv:2210.05885  (2022).
  23. Z. Brakerski, D. Sharma, and G. Weissenberg, Unitary subgroup testing, arXiv preprint arXiv:2104.03591  (2021).
  24. M. Soleimanifar and J. Wright, Testing matrix product states, in Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (SIAM, 2022) pp. 1679–1701.
  25. J. C. Garcia-Escartin and P. Chamorro-Posada, SWAP test and Hong-Ou-Mandel effect are equivalent, Phys. Rev. A 87, 052330 (2013).
  26. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, 2010).
  27. T. Rudolph and L. Grover, A 2 rebit gate universal for quantum computing, arXiv preprint quant-ph/0210187  (2002).
  28. A. Hickey and G. Gour, Quantifying the imaginarity of quantum mechanics, Journal of Physics A: Mathematical and Theoretical 51, 414009 (2018).
  29. D. Gottesman, The Heisenberg representation of quantum computers, Group22: Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics , 32 (1999).
  30. D. Aharonov, J. Cotler, and X.-L. Qi, Quantum algorithmic measurement, Nature communications 13, 887 (2022).
  31. U. Singh, L. Zhang, and A. K. Pati, Average coherence and its typicality for random pure states, Phys. Rev. A 93, 032125 (2016).
  32. D. E. Koh, M. Y. Niu, and T. J. Yoder, Quantum simulation from the bottom up: the case of rebits, Journal of Physics A: Mathematical and Theoretical 51, 195302 (2018).
  33. M. McKague, On the power quantum computation over real Hilbert spaces, International Journal of Quantum Information 11, 1350001 (2013).
  34. Y. Yang, G. Chiribella, and G. Adesso, Certifying quantumness: Benchmarks for the optimal processing of generalized coherent and squeezed states, Phys. Rev. A 90, 042319 (2014).
  35. J. Miyazaki, A. Soeda, and M. Murao, Complex conjugation supermap of unitary quantum maps and its universal implementation protocol, Phys. Rev. Res. 1, 013007 (2019).
  36. J. Katz and Y. Lindell, Introduction to modern cryptography (CRC press, 2020).
  37. T. Haug and M. Kim, Scalable measures of magic resource for quantum computers, PRX Quantum 4, 010301 (2023).
  38. S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nature Physics 2, 754 (2006).
  39. J. Bae and L.-C. Kwek, Quantum state discrimination and its applications, Journal of Physics A: Mathematical and Theoretical 48, 083001 (2015).
  40. A. Montanaro, Learning stabilizer states by Bell sampling, arXiv preprint arXiv:1707.04012  (2017).
  41. O. Gühne and G. Tóth, Entanglement detection, Physics Reports 474, 1 (2009).
  42. E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
  43. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
  44. J. D. Biamonte, M. E. S. Morales, and D. E. Koh, Entanglement scaling in quantum advantage benchmarks, Phys. Rev. A 101, 012349 (2020).
  45. R. Jozsa and M. Van den Nest, Classical simulation complexity of extended Clifford circuits, Quantum Information & Computation 14, 633 (2014).
  46. D. E. Koh, Further extensions of Clifford circuits and their classical simulation complexities, Quantum Information & Computation 17, 0262 (2017).
  47. T. Haug, S. Lee, and M. Kim, Efficient stabilizer entropies for quantum computers, arXiv preprint arXiv:2305.19152  (2023).
  48. K. Bu and D. E. Koh, Efficient classical simulation of Clifford circuits with nonstabilizer input states, Phys. Rev. Lett. 123, 170502 (2019).
  49. L. Leone, S. F. E. Oliviero, and A. Hamma, Stabilizer Rényi entropy, Phys. Rev. Lett. 128, 050402 (2022).
  50. K. Bu, W. Gu, and A. Jaffe, Stabilizer testing and magic entropy, arXiv preprint arXiv:2306.09292  (2023a).
  51. K. Bu, W. Gu, and A. Jaffe, Discrete quantum Gaussians and central limit theorem, arXiv preprint arXiv:2302.08423  (2023b).
  52. K. Bu, W. Gu, and A. Jaffe, Quantum entropy and central limit theorem, Proceedings of the National Academy of Sciences 120, e2304589120 (2023c).
  53. R. A. Low, Learning and testing algorithms for the Clifford group, Phys. Rev. A 80, 052314 (2009).
  54. G. Wang, Property testing of unitary operators, Phys. Rev. A 84, 052328 (2011).
  55. Z. Puchała and J. Miszczak, Symbolic integration with respect to the Haar measure on the unitary groups, Bulletin of the Polish Academy of Sciences: Technical Sciences 65, 21 (2017).
Citations (19)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com