Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A new thermodynamically compatible finite volume scheme for Lagrangian gas dynamics (2306.11651v1)

Published 20 Jun 2023 in math.NA and cs.NA

Abstract: The equations of Lagrangian gas dynamics fall into the larger class of overdetermined hyperbolic and thermodynamically compatible (HTC) systems of partial differential equations. They satisfy an entropy inequality (second principle of thermodynamics) and conserve total energy (first principle of thermodynamics). The aim of this work is to construct a novel thermodynamically compatible cell-centered Lagrangian finite volume scheme on unstructured meshes. Unlike in existing schemes, we choose to directly discretize the entropy inequality, hence obtaining total energy conservation as a consequence of the new thermodynamically compatible discretization of the other equations. First, the governing equations are written in fluctuation form. Next, the non-compatible centered numerical fluxes are corrected according to the approach recently introduced by Abgrall et al., using a scalar correction factor that is defined at the nodes of the grid. This perfectly fits into the formalism of nodal solvers which is typically adopted in cell-centered Lagrangian finite volume methods. Semi-discrete entropy conservative and entropy stable Lagrangian schemes are devised, and they are adequately blended together via a convex combination based on either a priori or a posteriori detectors of discontinuous solutions. The nonlinear stability in the energy norm is rigorously demonstrated and the new schemes are provably positivity preserving for density and pressure. Furthermore, they exhibit zero numerical diffusion for isentropic flows while being still nonlinearly stable. The new schemes are tested against classical benchmarks for Lagrangian hydrodynamics, assessing their convergence and robustness and comparing their numerical dissipation with classical Lagrangian finite volume methods.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube