Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Geometric particle-in-cell methods for Vlasov--Poisson equations with Maxwell--Boltzmann electrons (2306.11555v1)

Published 20 Jun 2023 in math.NA, cs.NA, and physics.plasm-ph

Abstract: In this paper, variational and Hamiltonian formulations of the Vlasov--Poisson equations with Maxwell--Boltzmann electrons are introduced. Structure-preserving particle-in-cell methods are constructed by discretizing the action integral and the Poisson bracket. We use the Hamiltonian splitting methods and the discrete gradient methods for time discretizations to preserve the geometric structure and energy, respectively. The global neutrality condition is also conserved by the discretizations. The schemes are asymptotic preserving when taking the quasi-neutral limit, and the limiting schemes are structure-preserving for the limiting model. Numerical experiments of finite grid instability, Landau damping, and two-stream instability illustrate the behavior of the proposed numerical methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)