Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Align, Adapt and Inject: Sound-guided Unified Image Generation (2306.11504v1)

Published 20 Jun 2023 in cs.GR, cs.CV, cs.SD, and eess.AS

Abstract: Text-guided image generation has witnessed unprecedented progress due to the development of diffusion models. Beyond text and image, sound is a vital element within the sphere of human perception, offering vivid representations and naturally coinciding with corresponding scenes. Taking advantage of sound therefore presents a promising avenue for exploration within image generation research. However, the relationship between audio and image supervision remains significantly underdeveloped, and the scarcity of related, high-quality datasets brings further obstacles. In this paper, we propose a unified framework 'Align, Adapt, and Inject' (AAI) for sound-guided image generation, editing, and stylization. In particular, our method adapts input sound into a sound token, like an ordinary word, which can plug and play with existing powerful diffusion-based Text-to-Image (T2I) models. Specifically, we first train a multi-modal encoder to align audio representation with the pre-trained textual manifold and visual manifold, respectively. Then, we propose the audio adapter to adapt audio representation into an audio token enriched with specific semantics, which can be injected into a frozen T2I model flexibly. In this way, we are able to extract the dynamic information of varied sounds, while utilizing the formidable capability of existing T2I models to facilitate sound-guided image generation, editing, and stylization in a convenient and cost-effective manner. The experiment results confirm that our proposed AAI outperforms other text and sound-guided state-of-the-art methods. And our aligned multi-modal encoder is also competitive with other approaches in the audio-visual retrieval and audio-text retrieval tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.