Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Masked Diffusion Models Are Fast Distribution Learners (2306.11363v4)

Published 20 Jun 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Diffusion model has emerged as the \emph{de-facto} model for image generation, yet the heavy training overhead hinders its broader adoption in the research community. We observe that diffusion models are commonly trained to learn all fine-grained visual information from scratch. This paradigm may cause unnecessary training costs hence requiring in-depth investigation. In this work, we show that it suffices to train a strong diffusion model by first pre-training the model to learn some primer distribution that loosely characterizes the unknown real image distribution. Then the pre-trained model can be fine-tuned for various generation tasks efficiently. In the pre-training stage, we propose to mask a high proportion (e.g., up to 90\%) of input images to approximately represent the primer distribution and introduce a masked denoising score matching objective to train a model to denoise visible areas. In subsequent fine-tuning stage, we efficiently train diffusion model without masking. Utilizing the two-stage training framework, we achieves significant training acceleration and a new FID score record of 6.27 on CelebA-HQ $256 \times 256$ for ViT-based diffusion models. The generalizability of a pre-trained model further helps building models that perform better than ones trained from scratch on different downstream datasets. For instance, a diffusion model pre-trained on VGGFace2 attains a 46\% quality improvement when fine-tuned on a different dataset that contains only 3000 images. Our code is available at \url{https://github.com/jiachenlei/maskdm}.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube