Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonlinear Feature Aggregation: Two Algorithms driven by Theory (2306.11143v1)

Published 19 Jun 2023 in cs.LG and stat.ML

Abstract: Many real-world machine learning applications are characterized by a huge number of features, leading to computational and memory issues, as well as the risk of overfitting. Ideally, only relevant and non-redundant features should be considered to preserve the complete information of the original data and limit the dimensionality. Dimensionality reduction and feature selection are common preprocessing techniques addressing the challenge of efficiently dealing with high-dimensional data. Dimensionality reduction methods control the number of features in the dataset while preserving its structure and minimizing information loss. Feature selection aims to identify the most relevant features for a task, discarding the less informative ones. Previous works have proposed approaches that aggregate features depending on their correlation without discarding any of them and preserving their interpretability through aggregation with the mean. A limitation of methods based on correlation is the assumption of linearity in the relationship between features and target. In this paper, we relax such an assumption in two ways. First, we propose a bias-variance analysis for general models with additive Gaussian noise, leading to a dimensionality reduction algorithm (NonLinCFA) which aggregates non-linear transformations of features with a generic aggregation function. Then, we extend the approach assuming that a generalized linear model regulates the relationship between features and target. A deviance analysis leads to a second dimensionality reduction algorithm (GenLinCFA), applicable to a larger class of regression problems and classification settings. Finally, we test the algorithms on synthetic and real-world datasets, performing regression and classification tasks, showing competitive performances.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube